(2009•長春模擬)如圖,矩形AOBC的頂點O在坐標原點,邊OB、OA分別在x、y軸的正半軸上,且OA=6個單位長度,OB=10個單位長度.射線y=x(x≥0)交線段AC于點D,點P從O點出發(fā),以每秒2個單位長度的速度沿O→A→D→O的路線勻速運動;與此同時,點Q從O點出發(fā),以每秒1個單位長度的速度沿O→B→C的路線勻速運動,當其中一點到達終點時,另一點也停止運動.設運動時間為t秒,△POQ的面積為S.
(1)線段AD=______;線段DO=______;
(2)分別求0≤t<3及7≤t<10時,S與t的函數(shù)關系式;
(3)求△POQ的面積S等于梯形DCBO面積一半時t的值;
(4)在運動的全過程中,是否存在t的值,使△POQ為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.
(備用圖)
【答案】分析:(1)設點D的坐標為(x,6),∵點D在y=x上,∴x=8,即AD=8,利用勾股定理可求得OD=10.
(2)0≤t<3時,P在AO上,Q在OB上.此時△POQ為直角三角形,兩直角邊分別為t,2t;易求得面積.7≤t<10時,P在DO上,Q在OB上,易求得OQ為t•OP的長度,利用∠POM=∠ADO的正切值即可求得OQ邊上的高PM.
(3)易求得梯形BCDO的面積為36.那么讓△POQ的面積等于18,應分P在AO上,Q在BO上;P在AD上,Q在OB上;P在DO上,Q在CB上.P在DO上,Q在BC上等情況分析.
(4)P在AO上,Q在BO上,此時為直角三角形,兩直角邊的邊長不可能相等,不存在為等腰三角形的形式.P在AD上,Q在OB上,PO=PQ,此時,AP的長度等于OQ的一半.PQ=OQ,可得到t的另一值.P在DO上,Q在CB上可利用PO=OQ得到t的值,PQ=OP.此時OM=MQ.P在DO上,Q在BC上△POQ是鈍角三角形,不存在等腰三角形的情況.
解答:解:(1)AD=8,OD=10(2分)

(2)當0≤t<3時,S=t2;(4分)
當7≤t<10時,PO=24-2t,
PM=(24-2t),
S=-+t
=-+(6分)


(3)當3≤t<7時,S=3t;
當10≤t≤12時,PQ=24-2t,CD=2,CE=,BE=,
BQ=t-10,EQ=-t,NQ=-t),
S=(12-t)(35-2t)
=-t+168
=-
3t=18,t=6,
-+t=18,t=6+,t=6-<7(舍).(8分)

(4)PO=PQ,2t-6=
t=4
PQ2=t2-12t+72,PQ2=OQ2,t=6
PO=24-2t,PO=OQ,t=8
OM=,(24-2t)=
t=.(10分)
另:

點評:本題考查運動過程中形成一定的面積和一定的形狀,注意分多種情況進行分析.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年吉林省長春市南關區(qū)九年級數(shù)學調研試卷(解析版) 題型:解答題

(2009•長春模擬)小明家、小亮家、學校在一條直的街道上,平時他倆乘同一校車上學,小明家距學校比小亮家遠,每天小明比小亮早5分鐘乘上校車上學.某日,因小明比每天晚了5分鐘趕不上校車,由爸爸開自家車送小明上學.設兩車均勻速行駛,小亮乘車時間為x(分),小明與小亮之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關系,根據(jù)圖象解決以下問題:
(1)小明和小亮家相距______km;
(2)請解釋圖中B點的實際意義;
(3)求線段CD所表示的y與x之間的函數(shù)關系式,并寫出自變量的取值范圍;
(4)求校車及自家車的車速(單位:km/小時);
(5)求小明家與學校的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年吉林省長春市南關區(qū)九年級數(shù)學調研試卷(解析版) 題型:解答題

(2009•長春模擬)如圖,已知拋物線y=ax2+bx+3與x軸、y軸分別交于A(1,0)、B(0,3)兩點,x軸上有一點C(-1,0),把△BOC向右平移2個單位長度后,一條直角邊恰好在拋物線的對稱軸上.
(1)求二次函數(shù)的關系式;
(2)把△BOC繼續(xù)向右平移,當B在拋物線上時,求第二次平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年吉林省長春市南關區(qū)九年級數(shù)學調研試卷(解析版) 題型:解答題

(2009•長春模擬)如圖,面積為2的矩形ABOC的邊OB、OC分別在x軸的負半軸和y軸的正半軸上,頂點A在雙曲線y=的圖象上,且OC=2.
(1)求k的值;
(2)將矩形ABOC以B為旋轉中心,逆時針旋轉90°后得到矩形BDEF,且雙曲線交DE于M點,交EF于N點,求△MEN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年吉林省長春市南關區(qū)九年級數(shù)學調研試卷(解析版) 題型:解答題

(2009•長春模擬)班委會準備用300元為同學購買筆記本作為獎品.到商場了解到,甲種筆記本的價格是乙種筆記本價格的1.5倍,用這300元全部購買乙種筆記本比全部購買甲種筆記本能多購買10本,求甲、乙兩種筆記本的價格.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年吉林省長春市南關區(qū)九年級數(shù)學調研試卷(解析版) 題型:解答題

(2009•長春模擬)如圖,PA與⊙O相切于點A,OP與⊙O相交于點B,點C是⊙O上一點,∠P=22°,求∠ACB度數(shù).

查看答案和解析>>

同步練習冊答案