【題目】如圖,是的直徑,點是圓上一點,,垂足為點,交于點,且.
(1)若點是的中點,求證:;
(2)求證:是的切線;
(3)若的半徑為10,,求的值.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)利用SAS證明△BOF≌△CEF即可證得CE=BO;
(2)先證明∠OCB=∠D,因為∠DCF+∠D=90°,所以∠DCF+∠OCB=90°即CD⊥CD,因為OC是⊙O的半徑,所以CD是⊙O的切線
(3)在Rt△OCF中,已知OC=10,可求得,根據(jù)勾股定理OF=6
證明Rt△OFC∽Rt△OCD,得出,即可求出OD,進(jìn)而求出DE,即可求出.
(1)∵OD⊥BC,OE是⊙O的半徑
∴∠BFO=∠CFE=90°,BF=CF
∵F是OE的中點
∴EF=OF
在△BOF和△CEF中
∴△BOF≌△CEF(SAS)
∴CE=BO
(2)如圖,連接OC
∵OB=OC
∴∠OCB=∠B
∵∠B=∠AEC,∠D=∠AEC
∴∠B=∠D
∴∠OCB=∠D
∵OD⊥BC
∴∠DCF+∠D=90°
∴∠DCF+∠OCB=90°即∠OCD=90°
∴CD⊥CD
∵OC是⊙O的半徑
∴CD是⊙O的切線
(3)在Rt△OCF中,OC=10
∵OD⊥BC,OE是⊙O的半徑
∴
∴在Rt△OCF中,
∵∠COF=∠DOC,∠OFC=∠OCD=90°
∴Rt△OFC∽Rt△OCD
∴即
∴
∴
∴
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某市市民上班時最常用的交通工具的情況,隨機抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“:自行車,:家庭汽車,:公交車,:電動車,:其他”五個選項中選擇最常用的一項,將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名市民;扇形統(tǒng)計圖中,項對應(yīng)的扇形圓心角是 °;
(2)補全條形統(tǒng)計圖;
(3)若甲、乙兩人上班時從四種交通工具中隨機選擇一種,請用列表法或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是⊙的直徑,是⊙的一條弦,,的延長線交⊙于點,交的延長線于點,連接,且恰好∥,連接交于點,延長交于點,連接.
(1)求證:是⊙的切線;
(2)求證:點是的中點;
(3)當(dāng)⊙的半徑為時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
我們知道若一個矩形的周長固定,當(dāng)相鄰兩邊相等,即為正方形時,面積是最大的,反過來,若一個矩形的面積固定,它的周長是否會有最值呢?
方法探究:
用兩條直角邊分別為、的四個全等的直角三角形,可以拼成一個正方形,
若,可以拼成如圖1的正方形,從而得到,即;
若,可以拼成如圖2的正方形,從而得到,即.
于是我們可以得到結(jié)論:,為正數(shù),總有,且當(dāng)時,代數(shù)式取得最小值為.
另外,我們也可以通過代數(shù)式運算得到類似上面的結(jié)論.
∵,
∴,,
∴對于任意實數(shù),,總有,
且當(dāng)時,代數(shù)式取得最小值為.
類比應(yīng)用:
(1)對于正數(shù),,試比較和的大小關(guān)系,并說明理由.
(2)填空:
當(dāng)時,________.
代數(shù)式有最________值為________.
問題解決:
(3)若一個矩形的面積固定為,它的周長是否會有最值呢?若有,求出周長的最值,及此時矩形的長和寬;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3過A(1,0),B(﹣3,0),直線AD交拋物線于點D,點D的橫坐標(biāo)為﹣2,點P(m,n)是線段AD上的動點.
(1)求直線AD及拋物線的解析式;
(2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度l與m的關(guān)系式,m為何值時,PQ最長?
(3)在平面內(nèi)是否存在整點(橫、縱坐標(biāo)都為整數(shù))R,使得P,Q,D,R為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點P.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)求點B的坐標(biāo);
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分線.以點D為圓心,適當(dāng)長為半徑畫弧,交DA于點G,交DC于點H.再分別以點G、H為圓心,大于GH的長為半徑畫弧,兩弧在∠ADC內(nèi)部交于點Q,連接DQ并延長與AM交于點F,則△ADF的形狀是( 。
A.等腰三角形B.等邊三角形
C.直角三角形D.等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,為的中點,一塊足夠大的三角板的直角頂點與點重合,將三角板繞點旋轉(zhuǎn),三角板的兩直角邊分別交或它們的延長線)于點,設(shè),下列四個結(jié)論:①;②; ③;④,正確的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com