【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O逆時針方向旋轉90°
得到△OA1B1

(1)線段A1B1的長是 , ∠AOA1的度數(shù)是;
(2)連結AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.

【答案】
(1)6;90°
(2)解:∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,

∴∠OA1B1=∠AOA1,A1B1=OA,

∴B1A1∥OA,

∴四邊形OAA1B1是平行四邊形


(3)解:S=OAA1O=6×6=36.

即四邊形OAA1B1的面積是36


【解析】解:(1)A1B1=AB=6,∠AOA1=90°.
故答案是:6,90°;
(1)根據(jù)旋轉的性質(zhì)即可直接求解;(2)根據(jù)旋轉的性質(zhì)以及平行線的判定定理證明B1A1∥OA且A1B1=OA即可證明四邊形OAA1B1是平行四邊形;(3)利用平行四邊形的面積公式求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點和點O均在網(wǎng)格圖的格點上,將△ABC繞點O逆時針旋轉90°,得到△A1B1C1
(1)請畫出△A1B1C1;
(2)以點O為圓心, 為半徑作⊙O,請判斷直線AA1與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖所示的一塊地,已知AD=12米,CD=9米,∠ADC=90,AB=39米,BC=36米,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,

(1)畫出△ABC關于x軸對稱的△A1B1C1
(2)畫出△ABC繞原點O旋轉180°后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點C(0,2).

(1)求拋物線的解析式;
(2)若點D為該拋物線上的一個動點,且在直線AC上方,當以A,C,D為頂點的三角形面積最大時,求點D的坐標及此時三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩條寬度都為3的紙條重疊在一起使ABC=60°,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個口袋中有紅球、黃球共20個,這些除顏色外都相同,將口袋中的球攪拌均勻,從中隨機摸出一球,記下顏色后再放回口袋,不斷重復這一過程,共摸了200次,發(fā)現(xiàn)其中有161次摸到紅球.則這個口袋中紅球數(shù)大約有(
A.4個
B.10個
C.16個
D.20個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點與原點重合,坐標為(0,0)

(1)寫出點B的坐標;

(2)動點P從點A出發(fā)以每秒3個單位長度的速度向終點B勻速運動,動點Q從點C出發(fā)以每秒4個單位長度的速度沿射線CD方向勻速運動,若P,Q兩點同時出發(fā),設運動時間為t,當t為何值時,PQ∥BC;

(3)在Q的運行過程中,當Q運動到什么位置時,使△ADQ的面積為9,求此時Q點的坐標.

查看答案和解析>>

同步練習冊答案