【題目】如圖,已知拋物線y=(x+2)(x4)(k為常數(shù),且k>0)與x軸從左至右依次交于A,B兩點(diǎn),與x軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線y=x+b與拋物線的另一交點(diǎn)為D.

(1)若點(diǎn)D的橫坐標(biāo)為5,求拋物線的函數(shù)表達(dá)式;

(2)若在第一象限內(nèi)的拋物線上有點(diǎn)P,使得以A,B,P為頂點(diǎn)的三角形與ABC相似,求k的值;

(3)在(1)的條件下,設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個單位的速度運(yùn)動到F,再沿線段FD以每秒2個單位的速度運(yùn)動到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個運(yùn)動過程中用時(shí)最少?

【答案】1、k=;2、k=或k=;3、2,2

【解析】

試題分析:1、首先求出A、B的坐標(biāo),然后根據(jù)點(diǎn)B的坐標(biāo)得出直線解析式,從而得到點(diǎn)D的坐標(biāo),然后將點(diǎn)D的坐標(biāo)代入解析式求出k的值;2、由拋物線解析式,令x=0,得y=k,C(0,k),OC=k.

因?yàn)辄c(diǎn)P在第一象限內(nèi)的拋物線上,所以ABP為鈍角.因此若兩個三角形相似,只可能是ABC∽△APB或ABC∽△ABP,然后分兩種情況分別進(jìn)行計(jì)算;3、首先得出t=AF+DF,根據(jù)垂線段最短可知,折線AF+FG的長度的最小值為DK與x軸之間的垂線段長度,然后根據(jù)一次函數(shù)的性質(zhì)求出答案.

試題解析:1、拋物線y=x+2)(x4 令y=0,解得x=2或x=4,

A(2,0),B(4,0).

直線y=x+b經(jīng)過點(diǎn)B(4,0),

∴﹣×4+b=0,解得b=

直線BD解析式為:y=x+

當(dāng)x=5時(shí),y=3,

D(5,3).

點(diǎn)D(5,3)在拋物線y=(x+2)(x4)上,

5+2)(54)=3

k=

2、由拋物線解析式,令x=0,得y=k,

C(0,k),OC=k.

因?yàn)辄c(diǎn)P在第一象限內(nèi)的拋物線上,所以ABP為鈍角.

因此若兩個三角形相似,只可能是ABC∽△APB或ABC∽△ABP.

ABC∽△APB,則有BAC=PAB,如答圖21所示.

設(shè)P(x,y),過點(diǎn)P作PNx軸于點(diǎn)N,則ON=x,PN=y.

tanBAC=tanPAB,即:,

y=x+k.

Dx,x+k

代入拋物線解析式y(tǒng)=x+2)(x4,

x+2)(x4=x+k,

整理得:6x16=0,

解得:x=8或x=2(與點(diǎn)A重合,舍去),

P(8,5k).

∵△ABC∽△APB,

,

解得:k=

ABC∽△ABP,則有ABC=PAB,如答圖22所示.

同理,可求得:k=

綜上所述,k=或k=

3、由(1)知:D(5,3),

如答圖22,過點(diǎn)D作DNx軸于點(diǎn)N,則DN=3,ON=5,BN=4+5=9,

tanDBA=,

∴∠DBA=30°

過點(diǎn)D作DKx軸,則KDF=DBA=30°

過點(diǎn)F作FGDK于點(diǎn)G,則FG=DF.

由題意,動點(diǎn)M運(yùn)動的路徑為折線AF+DF,運(yùn)動時(shí)間:t=AF+DF,

t=AF+FG,即運(yùn)動時(shí)間等于折線AF+FG的長度.

由垂線段最短可知,折線AF+FG的長度的最小值為DK與x軸之間的垂線段.

過點(diǎn)A作AHDK于點(diǎn)H,則t最小=AH,AH與直線BD的交點(diǎn),即為所求之F點(diǎn).

A點(diǎn)橫坐標(biāo)為2,直線BD解析式為:y=x+,

y=×2)+=2

F(2,2).

綜上所述,當(dāng)點(diǎn)F坐標(biāo)為(2,2)時(shí),點(diǎn)M在整個運(yùn)動過程中用時(shí)最少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn) Paa﹣3)在第四象限,則a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個長方形的面積為(6x2y+12xy﹣24xy3 )平方厘米,它的寬為6xy厘米,求它的長為多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次三項(xiàng)式x2﹣2x3的最大值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:4x2﹣1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)y=x 2m -1 為反比例函數(shù),則m的值是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形截去一個角后,形成另一個多邊形的內(nèi)角和為720°,那么原多邊形的邊數(shù)為(
A.5
B.5或6
C.5或7
D.5或6或7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果數(shù)軸上的點(diǎn)B對應(yīng)的有理數(shù)為﹣1,那么與B點(diǎn)相距3個單位長度的點(diǎn)所對應(yīng)的有理數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旋轉(zhuǎn)的定義:在平面內(nèi),將一個圖形繞______沿_______轉(zhuǎn)動一個_____的圖形變換叫做旋轉(zhuǎn).

查看答案和解析>>

同步練習(xí)冊答案