精英家教網(wǎng)如圖,乒乓球的最大截口⊙O的直徑AB垂直于弦CD,P為垂足,若CD=32cm,AP:PB=1:4,則AB=
 
分析:首先連接OC,由AP:PB=1:4,可設AP=xcm,PB=4xcm,即可求得OC與OP的值,又由垂徑定理求得PC的長,然后由CD=32cm,可得方程,解方程即可求得AB的長.
解答:精英家教網(wǎng)解:連接OC,
∵AP:PB=1:4,
設AP=xcm,PB=4xcm,
則AB=5x,OA=OC=
5
2
xcm,
∴OP=OA-PA=
3
2
xcm,
∵AB⊥CD,
∴PC=
1
2
CD=
1
2
×32=16(cm),
在Rt△OPC中,PC=
OC2-OP2
=2xcm,
∴2x=16,
∴x=8,
∴AB=5x=40(cm).
故答案為:40.
點評:此題考查了垂徑定理與勾股定理的應用.此題難度不大,解題的關鍵是注意數(shù)形結合思想與方程思想的應用,注意輔助線的作法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

如圖,乒乓球的最大截口⊙O的直徑AB垂直于弦CD,P為垂足,若CD=32cm,AP:PB=1:4,則AB=________.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年湖北省咸寧市中考數(shù)學試卷(解析版) 題型:填空題

如圖,乒乓球的最大截口⊙O的直徑AB垂直于弦CD,P為垂足,若CD=32cm,AP:PB=1:4,則AB=   

查看答案和解析>>

同步練習冊答案