【題目】已知長方形紙片ABCD,點E在邊AB上,點FG在邊CD上,連接EFEG.將∠BEG對折,點B落在直線EG上的點B′處,得折痕EM;將∠AEF對折,點A落在直線EF上的點A′處,得折痕EN

1)如圖1,若點F與點G重合,求∠MEN的度數(shù);

2)如圖2,若點G在點F的右側,且∠FEG30°,求∠MEN的度數(shù);

3)若∠MENα,請直接用含α的式子表示∠FEG的大。

【答案】1)∠MEN90°;(2)∠MEN105°;(3)∠FEG2α180°,∠FEG180°﹣2α

【解析】

1)根據(jù)角平分線的定義,平角的定義,角的和差定義計算即可.
2)根據(jù)∠MEN=NEF+FEG+MEG,求出∠NEF+MEG即可解決問題.
3)分兩種情形分別討論求解.

1)∵EN平分∠AEF,EM平分∠BEF

∴∠NEFAEF,∠MEFBEF

∴∠MEN=∠NEF+MEFAEF+BEF(∠AEF+BEF)=AEB

∵∠AEB180°

∴∠MEN×180°=90°

2)∵EN平分∠AEF,EM平分∠BEG

∴∠NEFAEF,∠MEGBEG

∴∠NEF+MEGAEF+BEG(∠AEF+BEG)=(∠AEB﹣∠FEG

∵∠AEB180°,∠FEG30°

∴∠NEF+MEG180°﹣30°)=75°

∴∠MEN=∠NEF+FEG+MEG75°+30°=105°

3)若點G在點F的右側,∠FEG2α180°,

若點G在點F的左側側,∠FEG180°﹣2α

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖在任意四邊形ABCD,AC,BD是對角線,E、FG、H分別是線段BD、BC、ACAD上的點,對于四邊形EFGH的形狀,某班的學生在一次數(shù)學活動課中,通過動手實踐,探索出如下結論,其中錯誤的是( )

A. E,FG,H是各條線段的中點時四邊形EFGH為平行四邊形

B. E,FG,H是各條線段的中點,ACBD,四邊形EFGH為矩形

C. E,FG,H是各條線段的中點,AB=CD,四邊形EFGH為菱形

D. E,FG,H不是各條線段的中點時四邊形EFGH可以為平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD 中,GCD上一點,BGAD延長線于E,AF=CG

1 求證:DF=BG;

2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,矩形OABC中,A100),C0,4),DOA的中點,PBC邊上一點.若△POD為等腰三角形,則所有滿足條件的點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P是O外一點,PO交O于點C,OC=CP=2,弦ABOC,AOC的度數(shù)為60°,連接PB.

(1)求BC的長;

(2)求證:PB是O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是作已知角的角平分線”的尺規(guī)作圖過程.

已知:如圖1,MON

求作:射線OP,使它平分MON

作法:如圖2,

(1)以點O為圓心,任意長為半徑作弧,交OM于點A,交ON于點B;

(2)連結AB;

(3)分別以點A,B為圓心,大于AB的長為半徑作弧,兩弧相交于點P

(4)作射線OP

所以,射線OP即為所求作的射線.

請回答:該尺規(guī)作圖的依據(jù)是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑作O,過點AO的切線AC,連結BC,交O于點D,點EBC邊的中點,連結AE

(1)求證:∠AEB=2∠C

(2)若AB=6,,求DE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中小學時期是學生身心變化最為明顯的時期,這個時期孩子們的身高變化呈現(xiàn)一定的趨勢,7~15歲期間生子們會經(jīng)歷一個身高發(fā)育較迅速的階段,我們把這個年齡階段叫做生長速度峰值段,小明通過上網(wǎng)查閱《2016年某市兒童體格發(fā)育調(diào)查表》,了解某市男女生7~15歲身高平均值記錄情況,并繪制了如下統(tǒng)計圖,并得出以下結論:

10歲之前,同齡的女生的平均身高一般會略高于男生的平均身高;

②10~12歲之間,女生達到生長速度峰值段,身高可能超過同齡男生;

7~15歲期間,男生的平均身高始終高于女生的平均身高;

④13~15歲男生身高出現(xiàn)生長速度峰值段,男女生身高差距可能逐漸加大.

以上結論正確的是(

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為提高學生課外閱讀能力,決定向九年級學生推薦課外閱讀書:A《熱愛生命》; B:《平凡的世界》;C:《毛澤東傳):;D:《牛虻》.并要求學生必須且只能選擇一本閱讀.為了解選擇四種課外閱讀書的學生人數(shù),隨機抽取了部分學生進行調(diào)查,并繪制以下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下列問題(要求寫出簡要的解答過程).

(1)這次活動一共調(diào)查了多少名學生?

(2)補全條形統(tǒng)計圖;

(3)若該學校九年級總人數(shù)是1300人,請估計選擇《毛澤東傳》閱讀的學生人數(shù).

查看答案和解析>>

同步練習冊答案