【題目】為了了解某校學(xué)生對以下四個電視節(jié)目:最強大腦、中國詩詞大會、朗讀者、出彩中國人的喜愛情況,隨機抽取了部分學(xué)生進行調(diào)查,要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中所提供的信息,完成下列問題:

本次調(diào)查的學(xué)生人數(shù)為______;

在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為______;

請將條形統(tǒng)計圖補充完整;

若該校共有3000名學(xué)生,估計該校最喜愛中國詩詞大會的學(xué)生有多少名.

【答案】1120;(2 ;(3)答案見解析;(41650.

【解析】

(1)依據(jù)節(jié)目B的數(shù)據(jù),即可得到調(diào)查的學(xué)生人數(shù);

(2)依據(jù)A部分的百分比,即可得到A部分所占圓心角的度數(shù);

(3)求得C部分的人數(shù),即可將條形統(tǒng)計圖補充完整;

(4)依據(jù)喜愛《中國詩詞大會》的學(xué)生所占的百分比,即可得到該校最喜愛《中國詩詞大會》的學(xué)生數(shù)量.

故答案為:120;

,

故答案為:;

,

如圖所示:

答:該校最喜愛中國詩詞大會的學(xué)生有1650名.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線l1:y=﹣x+n過點A(﹣1,3),雙曲線C:y= (x>0),過點B(1,2),動直線l2:y=kx﹣2k+2(常數(shù)k<0)恒過定點F.

(1)求直線l1 , 雙曲線C的解析式,定點F的坐標(biāo);
(2)在雙曲線C上取一點P(x,y),過P作x軸的平行線交直線l1于M,連接PF.求證:PF=PM.
(3)若動直線l2與雙曲線C交于P1 , P2兩點,連接OF交直線l1于點E,連接P1E,P2E,求證:EF平分∠P1EP2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD;

(2)求出AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為時,四邊形AMDN是矩形; ②當(dāng)AM的值為時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c

例如:因為23=8,所以(2,8)=3.

(1)根據(jù)上述規(guī)定,填空:

(3,27)=_______,(5,1)=_______,(2,)=_______.

(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:

設(shè)(3n,4n)=x,則(3nx=4n,即(3xn=4n

所以3x=4,即(3,4)=x

所以(3n,4n)=(3,4).

請你嘗試運用這種方法證明下面這個等式:(3,4)+(3,5)=(3,20)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關(guān)信息如下表:

時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200﹣2x

已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(m,m),點B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.

(1)求直線AB和OB的解析式.
(2)求拋物線的解析式.
(3)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD.問△BOD的面積是否存在最大值?若存在,求出這個最大值并寫出此時點D的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高速公路的同一側(cè)有A、B兩城鎮(zhèn),如圖,它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之間建一個出口P,使A、B兩城鎮(zhèn)到P的距離之和最。筮@個最短距離.

查看答案和解析>>

同步練習(xí)冊答案