【題目】某織布廠有150名工人,為了提高經(jīng)濟效益,增設制衣項目,已知每人每天能織布30m,或利用所織布制衣4件,制衣一件需要布1.5m,將布直接出售,每米布可獲利2元,將布制成衣后出售,每件可獲利25元,若每名工人每天只能做一項工作,且不計其他因素,設安排x名工人制衣.
(1)一天中制衣所獲利潤P是多少(用含x的式子表示);
(2)一天中剩余布所獲利潤Q是多少 (用含x的式子表示);.
(3)一天當中安排多少名工人制衣時,所獲利潤為11806元?
【答案】(1) 100x;(2) ;(3)應安排100名工人制衣.
【解析】
(1)根據(jù)一天的利潤=每件利潤×件數(shù)×人數(shù),列出代數(shù)式;
(2)安排x名工人制衣,則織布的人數(shù)為(150-x),根據(jù)利潤=(人數(shù)×米數(shù)-制衣用去的布)×每米利潤,列代數(shù)式即可;
(3)根據(jù)總利潤=11806,列方程求解即可.
(1)由題意得,P=25×4×x=100x.
故答案是:100x;
(2)由題意得,Q=[(150x)×306x]×2=900072x.
故答案是:(900072x);
(3)根據(jù)題意得
解得
答:應安排100名工人制衣.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線滿足條件:(1)在時, 隨的增大而增大,在時, 隨的增大而減。唬2)與軸有兩個交點,且兩個交點間的距離小于.以下四個結(jié)論:①;②;③;④,說法正確的個數(shù)有( )個
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,分別延長DC,BC至點E,F,使CE=CD,CF=CB,連接DB,BE,EF,FD.
(1)求證:四邊形DBEF是矩形;
(2)如果∠A=60°,DF的長為,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:四邊形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,△ABC中,以AC為直徑的⊙O與邊AB交于點D,點E為⊙O上一點,連接CE并延長交AB于點F,連接ED.
(1)若∠B+∠FED=90°,求證:BC是⊙O的切線;
(2)若FC=6,DE=3,F(xiàn)D=2,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知每件獎品價格相同,每件獎品價格相同,老師要網(wǎng)購兩種獎品件,若購買獎品件、獎品件,則微信錢包內(nèi)的錢會差元;若購買獎品件、獎品件,則微信錢包的錢會剩余元,老師實際購買了獎品件,獎品件,則微信錢包內(nèi)的錢會剩余__________元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交BE的延長線于F,且AF=DC,連接CF.
(1)如果AB=AC,試猜想四邊形ADCF的形狀,并證明你的結(jié)論;
(2)△ABC滿足什么條件時四邊形ADCF為正方形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等邊三角形,將四邊形ACBD沿直線EF折疊,使D與C重合,CE與CF分別交AB于點G、H.
(1)求證:△AEG∽△CHG;
(2)△AEG與△BHF是否相似,并說明理由;
(3)若BC=1,求cos∠CHG的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com