在雙曲線y=
k
x
的每一條分支上,y都隨x的增大而增大,則k的值可以是( 。
分析:根據(jù)反比例函數(shù)的性質(zhì):當(dāng)k<0時(shí),在每一個(gè)象限內(nèi),函數(shù)值y隨著自變量x的增大而增大作答.
解答:解:∵在雙曲線y=
k
x
的每一條分支上,y都隨x的增大而增大,
∴k<0,
故選:A.
點(diǎn)評(píng):本題考查了反比例函數(shù)的性質(zhì).對(duì)于反比例函數(shù)y=
k
x
,當(dāng)k>0時(shí),在每一個(gè)象限內(nèi),函數(shù)值y隨自變量x的增大而減小;當(dāng)k<0時(shí),在每一個(gè)象限內(nèi),函數(shù)值y隨自變量x增大而增大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州二模)如圖,在平面直角坐標(biāo)系中,直線y=kx和雙曲線y=
k′
x
在第一象限相交于點(diǎn)A(1,2),點(diǎn)B在y軸上,且AB⊥y軸.有一動(dòng)點(diǎn)P從原點(diǎn)出發(fā)沿y軸以每秒1個(gè)單位的速度向y軸的正方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(t>0),過點(diǎn)P作PD⊥y軸,交直線OA于點(diǎn)C,交雙曲線于點(diǎn)D.

(1)求直線y=kx和雙曲線y=
k′
x
的函數(shù)關(guān)系式;
(2)設(shè)四邊形CDAB的面積為S,當(dāng)P在線段OB上運(yùn)動(dòng)時(shí)(P不與B點(diǎn)重合),求S與t之間的函數(shù)關(guān)系式;
(3)在圖中第一象限的雙曲線上是否存在點(diǎn)Q,使以A、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)t的值和Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)的解析式為y=
1-k
x
(k≠1).
(1)在反比例函數(shù)圖象的每一條曲線上,y隨著x的增大而增大,求k的取值范圍;
(2)在(1)的條件下點(diǎn)A為雙曲線y=
1-k
x
(x<0)上一點(diǎn),AB∥x軸交直線y=x于點(diǎn)B,若AB2-OA2=4,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=kx和雙曲線數(shù)學(xué)公式在第一象限相交于點(diǎn)A(1,2),點(diǎn)B在y軸上,且AB⊥y軸.有一動(dòng)點(diǎn)P從原點(diǎn)出發(fā)沿y軸以每秒1個(gè)單位的速度向y軸的正方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(t>0),過點(diǎn)P作PD⊥y軸,交直線OA于點(diǎn)C,交雙曲線于點(diǎn)D.

(1)求直線y=kx和雙曲線數(shù)學(xué)公式的函數(shù)關(guān)系式;
(2)設(shè)四邊形CDAB的面積為S,當(dāng)P在線段OB上運(yùn)動(dòng)時(shí)(P不與B點(diǎn)重合),求S與t之間的函數(shù)關(guān)系式;
(3)在圖中第一象限的雙曲線上是否存在點(diǎn)Q,使以A、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)t的值和Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案