【題目】將分別標有數(shù)字2,3,5的三張顏色、質地、大小完全一樣的卡片背面朝上放在桌面上.

1)隨機抽取一張,求抽到奇數(shù)的概率;

2)隨機抽取一張作為個位上的數(shù)字(不放回),再抽取一張作為十位上的數(shù)字,能組成哪些兩位數(shù)?并畫樹狀圖或列表求出抽取到的兩位數(shù)恰好是35的概率.

【答案】1P(抽到奇數(shù))=;(2P(恰好抽到為35=

【解析】試題分析:(1)先求出這組數(shù)中奇數(shù)的個數(shù),再利用概率公式解答即可;

2)根據(jù)題意列舉出能組成的數(shù)的個數(shù)及35的個數(shù),再利用概率公式解答.

試題解析:(1)根據(jù)題意可得:有三張卡片,奇數(shù)只有“35”一張,故抽到奇數(shù)的概率P=;

2)根據(jù)題意可得:隨機抽取一張作為個位上的數(shù)字(不放回),再抽取一張作為十位上的數(shù)字,共能組成6個不同的兩位數(shù):3252,2353,25,35

其中恰好為35的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與X軸交點的橫坐標分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結論:

①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,

其中正確的有( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P是正方形ABCDAB上一點(不與A、B重合),連接PD并將線段PD繞點P順時針旋轉90°,得線段PE,連接BE,則∠CBE等于(

A. 75°B. 60°C. 30°D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中學生騎電動車上學給交通安全帶來隱患,為了解某中學2 500個學生家長對“中學生騎電動車上學”的態(tài)度,從中隨機調查400個家長,結果有360個家長持反對態(tài)度,則下列說法正確的是( )

A. 調查方式是普查 B. 該校只有360個家長持反對態(tài)度

C. 樣本是360個家長 D. 該校約有90%的家長持反對態(tài)度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,ABC的頂點坐標分別為A2,0),B0,4),C(﹣3,2).

1)如圖,求ABC的面積.

2)若點P的坐標為(m,0),

①請直接寫出線段AP的長為______(用含m的式子表示);

②當SPAB=2SABC時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的一個內角∠BAD=80°,對角線AC,BD相交于點O,點EAB上,且BE=BO,則∠EOA=___________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ACBCC,BC=a,CA=b,AB=c,下列選項中⊙O的半徑為的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A﹣1,0),B兩點,(點A在點B的左側),與直線AC交于點C2,3),直線AC與拋物線的對稱軸l相交于點D,連接BD

1)求拋物線的函數(shù)表達式,并求出點D的坐標;

2)如圖2,若點M、N同時從點D出發(fā),均以每秒1個單位長度的速度分別沿DA、DB運動,連接MN,將△DMN沿MN翻折,得到△D′MN,判斷四邊形DMD′N的形狀,并說明理由,當運動時間t為何值時,點D′恰好落在x軸上?

3)在平面內,是否存在點P(異于A點),使得以P、B、D為頂點的三角形與△ABD相似(全等除外)?若存在,請直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖1直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB上過點DAC于點E,過點EBC于點F.若,求∠DEF的度數(shù)。

請將下面的解答過程補充完整,并填空(理由或數(shù)學式)

解:

_________________.(_________________)

,

∴_____________.(_________________)

.(等量代換)

___________.

應用:如圖2,直線AB、BC、AC兩兩相交,交點分別為點A、BC,點D在線段AB的延長線上,過點DAC于點E,過點EBC于點F.若,則_________.

查看答案和解析>>

同步練習冊答案