【題目】為了解某中學(xué)學(xué)生對(duì)“厲行勤儉節(jié)約,反對(duì)鋪張浪費(fèi)”主題活動(dòng)的參與情況.小強(qiáng)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生并就某日午飯浪費(fèi)飯菜情況進(jìn)行了調(diào)查.將調(diào)查內(nèi)容分為四組:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.根據(jù)調(diào)查結(jié)果,繪制了如圖所示兩幅尚不完整的統(tǒng)計(jì)圖.

回答下列問題:
(1)這次被抽查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中,“B組”所對(duì)應(yīng)的圓心角的度數(shù)為;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該中學(xué)共有學(xué)生2500人,請(qǐng)估計(jì)這日午飯有剩飯的學(xué)生人數(shù);若按平均每人剩10克米飯計(jì)算,這日午飯將浪費(fèi)多少千克米飯?

【答案】
(1)120;72°
(2)解:C組的人數(shù)為:120×10%=12;

條形統(tǒng)計(jì)圖如下:


(3)解:這餐晚飯有剩飯的學(xué)生人數(shù)為:2500×(1﹣60%﹣10%)=750(人),750×10=7500(克)=7.5(千克).

答:這餐晚飯將浪費(fèi)7.5千克米飯


【解析】解:(1)這次被抽查的學(xué)生數(shù)=72÷60%=120(人), “B組”所對(duì)應(yīng)的圓心角的度數(shù)為:360°× =72°.
故答案為120,72°;
(1)用A組人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);求出B組所占的百分比,再乘以360°即可得出“B組”所對(duì)應(yīng)的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)乘以C組所占的百分比得出C組的人數(shù),進(jìn)而補(bǔ)全條形統(tǒng)計(jì)圖;(3)先求出這餐晚飯有剩飯的學(xué)生人數(shù)為:2500×(1﹣60%﹣10%)=750(人),再用人數(shù)乘每人平均剩10克米飯,把結(jié)果化為千克.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并解決后面的問題. 材料:我們知道,n個(gè)相同的因數(shù)a相乘 可記為an , 如23=8,此時(shí),3叫做以2為底8的對(duì)數(shù),記為log28(即log28=3),一般地,若an=b (a>0且a≠1,b>0),則n叫做以a為底b的對(duì)數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對(duì)數(shù),記為log381(即log381=4)
(1)計(jì)算以下各對(duì)數(shù)的值:log24= , log216= , log264=
(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式?log24、log216、log264之間又滿足怎樣的關(guān)系式?
(3)根據(jù)(2)的結(jié)果,我們可以歸納出:logaM+logaN=logaM N(a>0且a≠1,M>0,N>0) 請(qǐng)你根據(jù)冪的運(yùn)算法則:am=am+n以及對(duì)數(shù)的定義證明該結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,測得∠CAO=45°,輪船甲自西向東勻速行駛,同時(shí)輪船乙沿正北方向勻速行駛,它們的速度分別為45km/h和36km/h,經(jīng)過0.1h,輪船甲行駛至B處,輪船乙行駛至D處,測得∠DBO=58°,此時(shí)B處距離碼頭O多遠(yuǎn)?(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,OB為半徑,AB是⊙O的切線,OA與⊙O相交于點(diǎn)C,∠A=30°,OA=8,則陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在Rt△ABC中,∠C=90°,sinA= ,則tanB的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AO=10,AB=8,分別以O(shè)C、OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,點(diǎn)D(3,10)、E(0,6),拋物線y=ax2+bx+c經(jīng)過O,D,C三點(diǎn).

(1)求拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使四邊形MENC是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.給出以下結(jié)論:①DG=DF;②四邊形EFDG是菱形;③EG2= GF×AF;④當(dāng)AG=6,EG=2 時(shí),BE的長為 ,其中正確的結(jié)論個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,下述結(jié)論錯(cuò)誤的是(
A.BD平分∠ABC
B.△BCD的周長等于AB+BC
C.AD=BD=BC
D.點(diǎn)D是線段AC的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“清明節(jié)”前夕,某花店用6000元購進(jìn)若干花籃,上市后很快售完,接著又用7500元購進(jìn)第二批同樣的花籃.已知第二批所購的數(shù)量是第一批數(shù)量的1.5倍,且每個(gè)花藍(lán)的進(jìn)價(jià)比第一批的進(jìn)價(jià)少5元,求第一批花籃每個(gè)進(jìn)價(jià)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案