【題目】已知點A是⊙O上一點,P是⊙O外一點,AP的垂直平分線與⊙O相切于點C,交AP于B點.
⑴ 如圖1,若PA是⊙O的切線,求的值;
⑵ 如圖2,若PA與⊙O相交,OA=4,OP=10,求AP的長.
【答案】(1) ;(2) .
【解析】
(1)連接OA、OC,先證明四邊形OABC是正方形,從而得出OA=AB=BP,設OA=x,則AP=2x,在Rt△OAP中OP=,再求其比值;
(2)作OE⊥AP于E,連OC,先證明四邊形OABC是正方形,從而得出OE=EB=OA, 設AB=BP=x,則AE=AB-BE=x-4,根據OA2-=OE2=OP2-PE2列出方程,解方程,從而求出AP的長.
(1)連接OA、OC,如圖所示:
∵若PA是⊙O的切線,AP的垂直平分線與⊙O相切于點C
∴∠OAB=∠ABC=∠OCB=90o,AB=PB,
∴四邊形OABC是矩形,
又∵OA=OC,
∴四邊形OABC是正方形,
∴OA=AB,
∴OA=AB=BP
設OA=x,則AP=2x,在Rt△OAP中OP=,
∴;
(2)作OE⊥AP于E,連OC,
∵若PA是⊙O的切線,AP的垂直平分線與⊙O相切于點C
∴∠OEB=∠EBC=∠OCB=90o,AB=PB,
∴四邊形OEBC是矩形,
又∵OE=OC,
∴四邊形OEBC是正方形,
∴OE=EB,
∴OE=EB=OA,
設AB=BP=x,
則AE=AB-BE=x-4,∵OA2-=OE2=OP2-PE2,
∴42-(x-4)2=102-(x+4)2,
∴x=,
∴AP=2x=.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的題目及分析過程.已知:如圖點是的中點,點在上,且
原圖 ① ②
說明:
說明兩個角相等,常用的方法是應用全等三角形或等腰三角形的性質.觀察本題中說明的兩個角,它們既不在同一個三角形中,而且們所在兩個三角形也不全等.因此,要說明,必須添加適當?shù)妮o助線,構造全等三角形或等腰三角形,現(xiàn)在提供兩種添加輔加線的方法如下:
如圖①過點作,交的延長線于點.
如圖②延長至點,使,連接.
(1)請從以上兩種輔助線中選擇一種完成上題的說理過程.
(2)在解決上述問題的過程中,你用到了哪種數(shù)學思想?請寫出一個._______________.
(3)反思應用:
如圖,點是的中點,于點.
請類比(1)中解決問題的思想方法,添加適當?shù)妮o助線,判斷線段與之間的大小關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°
(1)求證:①AC=BD;②∠APB=50°;
(2)如圖②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,則AC與BD間的等量關系為 ,∠APB的大小為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD切⊙O于點D,AC⊥CD交⊙O于點E,若∠BAC=60°,AB=4,則陰影部分的面積是()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點,DE⊥AB于E,DF⊥AC于F,BE=CF.
(1)求證:AD平分∠BAC;
(2)連接EF,求證:AD垂直平分EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種水果,迸價為每箱40元,規(guī)定售價不低于進價.現(xiàn)在的售價為每箱72元,每月可銷售60箱.經市場調查發(fā)現(xiàn):若這種牛奶的售價每降低2元,則每月的銷量將增加10箱,設每箱水果降價x元(x為偶數(shù)),每月的銷量為y箱.
(1)寫出y與x之間的函數(shù)關系式和自變量x的取值范圍.
(2)若該超市在銷售過程中每月需支出其他費用500元,則如何定價才能使每月銷售水果的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃經銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、售價如下表所示.
價格/類型 | A型 | B型 |
進價(元/盞) | 40 | 65 |
售價(元/盞) | 60 | 100 |
(1)若該商場購進這批臺燈共用去2500元,問這兩種臺燈各購進多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進B種臺燈多少盞?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=(k≠0)的圖象經過點B(3,2),點B與點C關于原點O對稱,BA⊥x軸于點A,CD⊥x軸于點D.
(1)求這個反比函數(shù)的表達式;
(2)求△ACD的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com