【題目】如圖,是直角三角形,

1)請(qǐng)用尺規(guī)作圖法,作,使它與相切于點(diǎn),與相交于點(diǎn);保留作圖痕跡,不寫作法,請(qǐng)標(biāo)明字母)

2)在(1)的圖中,若,求弧的長(zhǎng).(結(jié)果保留

【答案】1)見解析;(2

【解析】

1)過(guò)點(diǎn)OAB的垂線,垂足為點(diǎn)C,然后以O點(diǎn)為圓心,OC為半徑作圓即可;

2)先根據(jù)切線的性質(zhì)得∠ACO=90°,則利用互余可計(jì)算出∠COD=90°-A=60°,∠BOC=90°-COD=30°,再在RtBOC中利用∠BOC的余弦可計(jì)算出OC,然后根據(jù)弧長(zhǎng)公式求解.

解:(1)如圖所示,即為所求作;

2相切于點(diǎn)

,

,

∵∠A=30°,∠AOB=90°

∴∠COD=90°-A=60°,∠BOC=90°-COD=30°

OB=2,

OC=OB×cos30°==,

∴弧CD=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)上,以為半徑的經(jīng)過(guò)點(diǎn),交于點(diǎn),連接

(1)求證:的切線;

(2)延長(zhǎng)到點(diǎn),連接,交于點(diǎn),連接,若,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn)

如圖均為等邊三角形,點(diǎn)在同一直線上,連接BE

填空:

的度數(shù)為______;

線段之間的數(shù)量關(guān)系為______.

拓展探究

如圖均為等腰直角三角形,,點(diǎn)在同一直線上,CMDE邊上的高,連接BE,請(qǐng)判斷的度數(shù)及線段之間的數(shù)量關(guān)系,并說(shuō)明理由.

解決問(wèn)題

如圖3,在正方形ABCD中,,若點(diǎn)P滿足,且,請(qǐng)直接寫出點(diǎn)ABP的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的邊軸上,點(diǎn)坐標(biāo)為交于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).若將菱形向左平移個(gè)單位,使點(diǎn)落在該反比例函數(shù)圖象上,則的值為( ).

A.1B.2C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】箱子里有4瓶牛奶,其中有一瓶是過(guò)期的.現(xiàn)從這4瓶牛奶中不放回地任意抽取2瓶.

1)請(qǐng)用樹狀圖或列表法把上述所有等可能的結(jié)果表示出來(lái);

2)求抽出的2瓶牛奶中恰好抽到過(guò)期牛奶的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,弦于點(diǎn),過(guò)的延長(zhǎng)線上一點(diǎn)的切線交的延長(zhǎng)線于點(diǎn),切點(diǎn)為點(diǎn),連接于點(diǎn)

1)求證:是等腰三角形;

2)若,求證:;

3)在(2)的條件下,若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某建設(shè)工程隊(duì)計(jì)劃每小時(shí)挖掘土石方方,現(xiàn)決定租用甲、乙兩種型號(hào)的挖掘機(jī)來(lái)完成這項(xiàng)工作,已知一臺(tái)甲型挖掘機(jī)與一臺(tái)乙型挖掘機(jī)每小時(shí)共挖土方,臺(tái)甲型挖掘機(jī)與臺(tái)乙型挖掘機(jī)恰好能完成每小時(shí)的挖掘量.

1)求甲、乙兩種型號(hào)的挖掘機(jī)每小時(shí)各挖土多少方?

2)若租用一臺(tái)甲型挖掘機(jī)每小時(shí)元,租用一臺(tái)乙型挖掘機(jī)每小時(shí)元,且每小時(shí)支付的總租金不超過(guò)元,又恰好完成每小時(shí)的挖掘量,請(qǐng)?jiān)O(shè)計(jì)該工程隊(duì)的租用方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】揚(yáng)州漆器名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,的弦,的中點(diǎn),于點(diǎn)延長(zhǎng)線一點(diǎn),且

求證: 的切線:

已知,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案