【題目】如圖,已知正方形ABCD中,AE∥BD,BE=BD,BE交AD于F. 求證:DE=DF.
【答案】見解析
【解析】試題分析:連接AC,交BD于點O,作EG⊥BD于點G,則可知四邊形AOGE是矩形,可證得EG=BD=E,所以∠EBD=30°,結(jié)合條件可求得∠BED=75°,∠EFD=∠FDB+∠EBD=45+30=75°,故∠DEF=∠DFE,即可得到DF=DE.
試題解析:
證明:連接AC,交BD于點O,作EG⊥BD于點G.如圖所示:
∵四邊形ABCD是正方形,
∴AC⊥BD,
∵AE∥BD,
∴四邊形AOGE是矩形,
∴EG=AO=AC=BD=BE,
∴∠EBD=30°,
∵∠EBD=30°,BE=BD,
∴∠BED=75°,
∵∠EFD=∠FDB+∠EBD=45+30=75°,
∴∠DEF=∠DFE,
∴DF=DE.
科目:初中數(shù)學 來源: 題型:
【題目】某市區(qū)自2014年1月起,居民生活用水開始實行階梯式計量水價,該階梯式計量水價分為三級(如下表所示):
月用水量(噸) | 水價(元/噸) |
第一級 20噸以下(含20噸) | 1.6 |
第二級 20噸﹣30噸(含30噸) | 2.4 |
第三級 30噸以上 | 3.2 |
例:某用戶的月用水量為32噸,按三級計量應繳水費為:
1.6×20+2.4×10+3.2×2=62.4(元)
(1)如果甲用戶的月用水量為12噸,則甲需繳的水費為 元;
(2)如果乙用戶繳的水費為39.2元,則乙月用水量 噸;
(3)如果丙用戶的月用水量為a噸,則丙用戶該月應繳水費多少元?(用含a的代數(shù)式表示,并化簡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】幾何計算
(1)如圖1,∠AOC,∠BOD都是直角,且∠AOB與∠AOD的度數(shù)比是2:11,求∠BOC的度數(shù).
(2)如圖2,點C分線段AB為3:4,AC<BC,點D分線段為AB上一點且11BD=3AD,若CD=10cm,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,已知點A、B在雙曲線(x>0)上,AC⊥x軸于C,BD⊥y軸于點D,AC與BD交于點P,P是AC的中點,點B的橫坐標為b.A與B的坐標分別為_____、______(用b與k表示),由此可以猜想AP與CP的數(shù)量關系是______.
(2)四邊形ABCD的四個頂點分別在反比例函數(shù)y與y的圖象上,對角線BD∥y軸,且BD⊥AC于點P,P是BD的中點,點B的橫坐標為4.
①當時,判斷四邊形ABCD的形狀并說明理由.
②四邊形ABCD能否成為正方形?若能,直接寫出此時m,n之間的數(shù)量關系;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點O在邊BC上,求證:AB=AC;
(2)如圖2,若點O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點O在△ABC的外部,AB=AC成立嗎?請畫出圖表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3,以點B為旋轉(zhuǎn)中心,將△ABP按順時針方向旋轉(zhuǎn)使點A與點C重合,這時P點旋轉(zhuǎn)到G點.
(1)請畫出旋轉(zhuǎn)后的圖形,說出此時△ABP以點B為旋轉(zhuǎn)中心最少旋轉(zhuǎn)了多少度;
(2)求出PG的長度;
(3)請你猜想△PGC的形狀,并說明理由;
(4)請你計算∠BGC的角度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接“十一”小長假的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋 | 甲 | 乙 |
進價(元/雙) | m | m﹣20 |
售價(元/雙) | 240 | 160 |
已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.
(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于21700元,且不超過22300元,問該專賣店有幾種進貨方案?
(3)在(2)的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,O是矩形ABCD的對角線的交點,作DE∥AC,CE∥BD,DE、CE相交于點E.求證:
(1)四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形OABC的頂點B(6,8),動點M,N同時從O點出發(fā),點M沿射線OA方向以每秒1個單位的速度運動,點N沿線段OB方向以每秒0.6個單位的速度運動,當點N到達點B時,點M,N同時停止運動,連接MN,設運動時間為t(秒).
(1)求證△ONM~△OAB;
(2)當點M是運動到點時,若雙曲線的圖象恰好過點N,試求k的值;
(3)△MNB與△OAB能否相似?若能試求出所有t的值,若不能請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com