【題目】對(duì)于坐標(biāo)平面內(nèi)的點(diǎn),先將該點(diǎn)向右平移1個(gè)單位,再向上平移2個(gè)單位,這種點(diǎn)的運(yùn)動(dòng)稱為點(diǎn)的斜平移,如點(diǎn)P(2,3)經(jīng)1次斜平移后的點(diǎn)的坐標(biāo)為(3,5).已知點(diǎn)A的坐標(biāo)為(1,0).如圖,點(diǎn)M是直線l上的一點(diǎn),點(diǎn)A關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為點(diǎn)B,點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)為點(diǎn)C.若點(diǎn)B由點(diǎn)A經(jīng)n次斜平移后得到,且點(diǎn)C的坐標(biāo)為(7,6),則點(diǎn)B的坐標(biāo)為_____及n的值為______.
【答案】(5,8) 4
【解析】
連接CM,根據(jù)中心對(duì)稱可得:AM=BM,由軸對(duì)稱可得:MB=MC,所以AM=CM=BM,進(jìn)而可以證明△ABC是直角三角形,延長(zhǎng)BC交x軸于點(diǎn)E,過點(diǎn)C作CF⊥AE于點(diǎn)F,可以證明△ACF是等腰直角三角形,可得E點(diǎn)坐標(biāo),進(jìn)而可求直線BE的解析式,再根據(jù)點(diǎn)B由點(diǎn)A經(jīng)n次斜平移得到,得點(diǎn)B(n+1,2n),代入直線解析式即可求得n的值,進(jìn)而可得點(diǎn)B的坐標(biāo).
解:連接CM,
由中心對(duì)稱可知:AM=BM,
由軸對(duì)稱可知:MB=MC,
∴AM=CM=BM,
∴∠MAC=∠ACM,∠MBC=∠MCB,
∵∠MAC+∠ACM+∠MBC+∠MCB=180°,
∴∠ACB=90°,
∴△ABC是直角三角形.
延長(zhǎng)BC交x軸于點(diǎn)E,過點(diǎn)C作CF⊥AE于點(diǎn)F,
∵A(1,0),C(7,6),
∴AF=CF=6,
∴△ACF是等腰直角三角形,
∵∠ACE=90°,∴∠AEC=45°,
∴E點(diǎn)坐標(biāo)為(13,0),
設(shè)直線BE的解析式為y=kx+b,
∵點(diǎn)C,E在直線上,
∴,
解得,
∴y=﹣x+13,
∵點(diǎn)B由點(diǎn)A經(jīng)n次斜平移得到,
∴點(diǎn)B(n+1,2n),
由2n=﹣n﹣1,解得n=4,
∴B(5,8).
故答案為:(5,8)、4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某景區(qū)的兩個(gè)景點(diǎn)A、B處于同一水平地面上、一架無人機(jī)在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無人機(jī)飛行至C處時(shí)、測(cè)得景點(diǎn)A的俯角為45°,景點(diǎn)B的俯角為30°,此時(shí)C到地面的距離CD為100米,則兩景點(diǎn)A、B間的距離為__米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P(不與點(diǎn)A,B重合)為半圓上一點(diǎn),將圖形沿BP折疊,分別得到點(diǎn)A,O的對(duì)應(yīng)點(diǎn)點(diǎn)A′,O′,過點(diǎn)A′C∥AB,若A′C與半圓O恰好相切,則∠ABP的大小為_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AB=8,CD是AB邊上的中線,作CD的中垂線與CD交于點(diǎn)E,與BC交于點(diǎn)F.若CF=x,tanA=y,則x與y之間滿足( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD內(nèi)接于圓O,AC是圓O的直徑,過點(diǎn)A的切線與CD的延長(zhǎng)線相交于點(diǎn)P.且∠APC=∠BCP.
(1)求證:∠BAC=2∠ACD.
(2)過圖1中的點(diǎn)D作DE⊥AC于E,交BC于G(如圖2),BG:GE=3:5,OE=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方方駕駛小汽車勻速地從A地行使到B地,行駛里程為480千米,設(shè)小汽車的行使時(shí)間為t(單位:小時(shí)),行使速度為v(單位:千米/小時(shí)),且全程速度限定為不超過120千米/小時(shí).
⑴求v關(guān)于t的函數(shù)表達(dá)式;
⑵方方上午8點(diǎn)駕駛小汽車從A出發(fā).
①方方需在當(dāng)天12點(diǎn)48分至14點(diǎn)(含12點(diǎn)48分和14點(diǎn))間到達(dá)B地,求小汽車行駛速度v的范圍.
②方方能否在當(dāng)天11點(diǎn)30分前到達(dá)B地?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OA1B1,△B1A2B2是等邊三角形,點(diǎn)A1,A2在函數(shù)的圖象上,點(diǎn)B1,B2在x軸的正半軸上,分別求△OA1B1,△B1A2B2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形.
(1)用直尺和圓規(guī)作出對(duì)角線AC的垂直平分線,分別交AD,BC于E,F;(保留作圖痕跡,不寫作法)
(2)在(1)作出的圖形中,連接CE,AF,若AB=4,BC=8,且AB⊥AC,求四邊形AECF的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com