【題目】如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過(guò)A(3,0)、B(4,4)、D(2, n)三點(diǎn).
(1)求拋物線的解析式及點(diǎn)D坐標(biāo);
(2)點(diǎn)M是拋物線對(duì)稱軸上一動(dòng)點(diǎn),求使BM-AM的值最大時(shí)的點(diǎn)M的坐標(biāo);
(3)如圖2,將射線BA沿BO翻折,交y軸于點(diǎn)C,交拋物線于點(diǎn)N,求點(diǎn)N的坐標(biāo);
(4)在(3)的條件下,連結(jié)ON,OD,如圖2,請(qǐng)求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).
【答案】(1)y=x2﹣3x;(2,﹣2);(2)(,);(3)();(4)()或().
【解析】
試題分析:(1)根據(jù)曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,將(3,0)、B(4,4)代入y=ax2+bx即可求得拋物線的解析式,令x=2,即可求得點(diǎn)D坐標(biāo);
(2)拋物線對(duì)稱軸上使BM-AM的值最大時(shí)的點(diǎn)M即直線AB與拋物線對(duì)稱軸的交點(diǎn),從而應(yīng)用待定系數(shù)法求出直線AB的解析式,即可求得點(diǎn)M的坐標(biāo);
(3)用待定系數(shù)法求出直線CB的解析式,由點(diǎn)N在直線CB和拋物線y=x2﹣3x上,即可求出N點(diǎn)的坐標(biāo);
(4)應(yīng)用對(duì)稱或旋轉(zhuǎn)的性質(zhì)即可求得點(diǎn)P的坐標(biāo).
試題解析:(1)∵拋物線y=ax2+bx(a≠0)經(jīng)過(guò)A(3,0)、B(4,4),
∴拋物線的解析式是y=x2﹣3x.∴D點(diǎn)的坐標(biāo)為(2,﹣2).
(2)設(shè)直線AB解析式為:y=kx+m, 將 A(3,0)、B(4,4)代人得
,解得. ∴直線AB解析式為:.
∵拋物線對(duì)稱軸為,當(dāng)時(shí), ,
∴當(dāng)點(diǎn)M(,)時(shí),BM-AM的值最大.
(3)∵直線OB的解析式為y=x,且A(3,0),
根據(jù)軸對(duì)稱性質(zhì)得出∠CBO=∠ABO,∠COB=∠AOB,OB=OB, ∴△AOB≌△COB.
∴OC=OA. ∴點(diǎn)C(0,3).
設(shè)直線CB的解析式為y=kx+3,過(guò)點(diǎn)(4,4),∴直線CB的解析式是.
∵點(diǎn)N在直線CB上,∴設(shè)點(diǎn)N(n,).
又點(diǎn)N在拋物線y=x2﹣3x上,∴,解得:n1=,n2=4(不合題意,舍去)。
∴N點(diǎn)的坐標(biāo)為().
(4)如圖,將△NOB沿x軸翻折,得到△N1OB1,則N1(),B1(4,﹣4),
∴O、D、B1都在直線y=﹣x上.
∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1. ∴.
∴點(diǎn)P1的坐標(biāo)為().
將△OP1D沿直線y=﹣x翻折,可得另一個(gè)滿足條件的點(diǎn)P2().
綜上所述,點(diǎn)P的坐標(biāo)是()或().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列從左到右的變形,屬于因式分解的是( )
A.(x+3)(x﹣2)=x2+x﹣6
B.ax﹣ay﹣1=a(x﹣y)﹣1
C.8a2b3=2a24b3
D.x2﹣4=(x+2)(x﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形的兩邊長(zhǎng)分別為方程x2﹣8x+15=0的兩根,則該三角形周長(zhǎng)L的取值范圍是( )
A. 6<L<15B. 6<L<16C. 10<L<16D. 11<L<13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B、C、D在同一平面內(nèi),從①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;這四個(gè)條件中任選兩個(gè),能使四邊形ABCD成為平行四邊形的選法共有( )
A. 3種 B 4種 C 5種 D 6種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)四邊形的三個(gè)內(nèi)角的度數(shù)依次如下,那么其中是平行四邊形的是( )
A. 88°,108°,88° B. 88°,104°,88°
C. 88°,92°,92° D. 88°,92°,88°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若△ABC∽△A′B′C′,相似比為1:2,則△ABC與△A′B′C′的面積的比為( )
A.1:2
B.2:1
C.1:4
D.4:1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com