兩圓半徑分別為3和4,圓心距為7,則這兩個(gè)圓(     )
A.外切B.相交C.相離D.內(nèi)切
A
解:,即這兩個(gè)圓外切,故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙與⊙相交于、兩點(diǎn),點(diǎn)在⊙上,為⊙上一點(diǎn)(不與,重合),直線與⊙交于另一點(diǎn)。

(1)如圖(1),若是⊙的直徑,求證:;(4分)
(2)如圖(2),若是⊙外一點(diǎn),求證:;(4分)
(3)如圖(3),若是⊙內(nèi)一點(diǎn),判斷(2)中的結(jié)論是否成立。(3分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知OA、OB是⊙O的兩條半徑,且OA⊥BC,C為OB延長線上任意一點(diǎn),過點(diǎn)C作CD切⊙O于點(diǎn)D,連接AD,交OC過于點(diǎn)E。

(1)求證:CD=CE;
(2)若將圖1中的半徑OB所在的直線向上平行移動(dòng),交⊙O于,其他條件不變,如圖2,那么上述結(jié)論CD=CE還成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,BD為⊙O的直徑,AB=AC,AD交BC于點(diǎn)E,AE=2,ED=4,

(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(2, ),直線AB為⊙O的切線,B為切點(diǎn)。則B點(diǎn)的坐標(biāo)為
A.(B.(
C.(D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如下圖所示的圖案中,弧=弧=弧=弧=60°,繞中心O至少旋轉(zhuǎn)________度后,能與原來的圖案重合。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

1471年,德國數(shù)學(xué)家米勒提出了雕塑問題:假定有一個(gè)雕塑高AB=3米,立在一個(gè)底座上,底座的高BC=2.2米,一個(gè)人注視著這個(gè)雕塑并朝它走去,這個(gè)人的水平視線離地1.7米,問此人應(yīng)站在離雕塑底座多遠(yuǎn)處,才能使看雕塑的效果最好,所謂看雕塑的效果最好是指看雕塑的視角最大,問題轉(zhuǎn)化為在水平視線EF上求使視角最大的點(diǎn),如圖:過A、B兩點(diǎn),作一圓與EF相切于點(diǎn)M,你能說明點(diǎn)M為所求的點(diǎn)嗎?并求出此時(shí)這個(gè)人離雕塑底座的距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AB是直徑,于點(diǎn),且交于點(diǎn),若

(1)判斷直線的位置關(guān)系,并給出證明;
(2)當(dāng)時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AC為⊙O的直徑且PA⊥AC,BC是⊙O的一條弦,直線PB交直線AC于點(diǎn)D,.

(1)求證:直線PB是⊙O的切線;
(2)求cos∠BCA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案