(2012•廣州模擬)如圖,正方形ABCD以AD為邊向外作等邊三角形ADE,則∠BEC的度數(shù)為( 。
分析:由四邊形ABCD為正方形,得到四條邊相等,四個角為直角,三角形ADE為等邊三角形,得到三條邊相等,三個角為60°,由∠BAD+∠DAE求出∠BAE的度數(shù),同理求出∠CDE的度數(shù),由三角形ABE與三角形CDE都為等腰三角形,根據(jù)頂角的度數(shù),利用三角形的內(nèi)角和定理及等腰三角形的性質(zhì)求出底角的度數(shù),得到∠AEB與∠CED的度數(shù),用∠AED-∠AEB-∠CED即可求出∠BEC的度數(shù).
解答:解:∵四邊形ABCD為正方形,△ADE為等邊三角形,
∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,
∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,
∴∠AEB=∠CED=15°,
則∠BEC=∠AED-∠AEB-∠CED=30°.
故選A.
點評:此題考查了正方形的性質(zhì),以及等邊三角形的性質(zhì),利用了等量代換的思想,熟練掌握性質(zhì)是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•廣州模擬)函數(shù)y=
2x+3
的自變量x的取值范圍是
x≠-3
x≠-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州模擬)我國某工程預計總投資167萬元,用科學記數(shù)法表示為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州模擬)若(2,k)是雙曲線y=
1
x
上一點,則函數(shù)y=(k-1)x+k的圖象不經(jīng)過( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州模擬)要在一塊長方形的空地上修建一個既是軸對稱,又是中心對稱圖形的花壇,下列圖案中不符合設計要求的是(  )

查看答案和解析>>

同步練習冊答案