如圖(1),在平面直角坐標(biāo)系中,矩形ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線yx2bxc經(jīng)過矩形ABCO的頂點(diǎn)B、C,DBC的中點(diǎn),直線ADy軸交于E點(diǎn),點(diǎn)F在直線AD上且橫坐標(biāo)為6.

(1)求該拋物線解析式并判斷F點(diǎn)是否在該拋物線上;
(2)如圖,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CB以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);
同時(shí),動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AE以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)E運(yùn)動(dòng).過點(diǎn)PPHOA,垂足為H,連接MP,MH.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請(qǐng)說明理由.
②若△PMH是等腰三角形,求出此時(shí)t的值.
(1)yx2+2x+3;在該拋物線上估計(jì)是
還有(2)AN=t,MN=,,1,

試題分析:28、解:(1)yx2+2x+3,   
(2)①∵E(0,6)  ∴CE=CO
連接CFx軸于H′,過H′作x軸的垂線交BCP′,當(dāng)P
運(yùn)動(dòng)到P′,當(dāng)H運(yùn)動(dòng)到H′時(shí), EP+PH+HF的值最小.
設(shè)直線CF的解析式為

C(0,3)、F(6,-3) ∴ ∴ ∴
當(dāng)y=0時(shí),x=3,∴H′(3,0) ∴CP=3  ∴t=3   
②如圖1,過MMNOAOAN
∵△AMN∽△AEO,∴
 ∴AN=tMN=
Ⅰ.如圖1,當(dāng)PM=HM時(shí),MPH的垂直平分線上,
MN=PH   MN=  ∴t=1
Ⅱ.如圖2,當(dāng)PH=HM時(shí),MH=3,MN=,
HN=OA-AN-OH=4-2t 在Rt△HMN中,
,
 (舍去),
Ⅲ.如圖3.如圖4,當(dāng)PH=PM時(shí),PM=3, MT=,PT=BC-CP-BT=在Rt△PMT中,,

,25t2-100t+64=0 
,,1,         
點(diǎn)評(píng):本題難度較大,主要考查學(xué)生結(jié)合拋物線性質(zhì)及矩形性質(zhì)解決動(dòng)點(diǎn)問題。動(dòng)點(diǎn)問題為中考常考題型,注意培養(yǎng)數(shù)形結(jié)合思想,運(yùn)用到考試中去。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們知道,經(jīng)過原點(diǎn)的拋物線解析式可以是。
(1)對(duì)于這樣的拋物線:
當(dāng)頂點(diǎn)坐標(biāo)為(1,1)時(shí),a=       ;
當(dāng)頂點(diǎn)坐標(biāo)為(m,m),m≠0時(shí),a 與m之間的關(guān)系式是       ;
(2)繼續(xù)探究,如果b≠0,且過原點(diǎn)的拋物線頂點(diǎn)在直線上,請(qǐng)用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過原點(diǎn)的拋物線,頂點(diǎn)A1,A2,…,An在直線上,橫坐標(biāo)依次為1,2,…,n(n為正整數(shù),且n≤12),分別過每個(gè)頂點(diǎn)作x軸的垂線,垂足記為B1,B2,B3,…,Bn,以線段AnBn為邊向右作正方形AnBnCnDn,若這組拋物線中有一條經(jīng)過點(diǎn)Dn,求所有滿足條件的正方形邊長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司經(jīng)銷某品牌運(yùn)動(dòng)鞋,年銷售量為10萬雙,每雙鞋按250元銷售,可獲利25﹪設(shè)每雙鞋的成本價(jià)為元.

(1)試求的值;
(2)為了擴(kuò)大銷售量,公司決定拿出一定量的資金做廣告,根據(jù)市場(chǎng)調(diào)查,若每年投入廣告費(fèi)為(萬元)時(shí),產(chǎn)品的年銷售量將是原來年銷售量的倍,且之間的關(guān)系滿足.請(qǐng)根據(jù)圖象提供的信息,求出之間的函數(shù)關(guān)系式;
(3)在(2)的條件下求年利潤(rùn)S(萬元)與廣告費(fèi)(萬元)之間的函數(shù)關(guān)系式,并請(qǐng)回答廣告費(fèi)(萬元)在什么范圍內(nèi),公司獲得的年利潤(rùn)S(萬元)隨廣告費(fèi)的增大而增多?(注:年利潤(rùn)S=年銷售總額-成本費(fèi)-廣告費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為 [m,1-m,-1]的函數(shù)的一些結(jié)論:
① 當(dāng)m=-1時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(1,0);
② 當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長(zhǎng)度大于1;
③ 當(dāng)m<0時(shí),函數(shù)在x>時(shí),y隨x的增大而減。
④ 不論m取何值,函數(shù)圖象經(jīng)過一個(gè)定點(diǎn).
其中正確的結(jié)論有            ( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線與x軸交與,兩點(diǎn),
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸交于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)為常數(shù)),當(dāng)取不同的值時(shí),其圖象構(gòu)成一個(gè)“拋物線系”.下圖分別是當(dāng),,時(shí)二次函數(shù)的圖象.它們的頂點(diǎn)在一條直線上,這條直線的解析式是__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的自變量x的取值范圍是            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①;②;③當(dāng)時(shí),的最小值為,④中,正確的有             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)C(,0),點(diǎn)D(0,1),CD的中垂線交CD于點(diǎn)E,交y軸于點(diǎn)B,點(diǎn)P從點(diǎn)C出發(fā)沿CO方向以每秒個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從原點(diǎn)O出發(fā)沿OD方向以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)D時(shí),點(diǎn)P,Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒。

(1)求出點(diǎn)B的坐標(biāo)。
(2)當(dāng)為何值時(shí),△POQ與△COD相似?
(3)當(dāng)點(diǎn)P在x軸負(fù)半軸上時(shí),記四邊形PBEQ的面積為S,求S關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)在點(diǎn)P、Q的運(yùn)動(dòng)過程中,將△POQ繞點(diǎn)O旋轉(zhuǎn)1800,點(diǎn)P的對(duì)應(yīng)點(diǎn)P′,點(diǎn)Q的對(duì)應(yīng)點(diǎn)Q′,當(dāng)線段P′Q′與線段BE有公共點(diǎn)時(shí),拋物線經(jīng)過P′Q′的中點(diǎn),此時(shí)的拋物線與x軸正半軸交于點(diǎn)M。由已知,直接寫出:
的取值范圍為                ;
②點(diǎn)M移動(dòng)的平均速度是               。

查看答案和解析>>

同步練習(xí)冊(cè)答案