【題目】閱讀下面材料:

在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:過圓外一點(diǎn)作圓的切線.

已知:PO外一點(diǎn).

求作:經(jīng)過點(diǎn)PO的切線.

小敏的作法如下:

如圖,

1)連接OP,作線段OP的垂直平分線MNOP于點(diǎn)C

2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交OAB兩點(diǎn);

3)作直線PA,PB.所以直線PA,PB就是所求作的切線.

老師認(rèn)為小敏的作法正確.

請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP90°,其依據(jù)是_____;由此可證明直線PAPB都是O的切線,其依據(jù)是_____

【答案】直徑所對(duì)的圓周角是直角 經(jīng)過半徑外端,且與半徑垂直的直線是圓的切線.

【解析】

分別利用圓周角定理以及切線的判定方法得出答案.

解:連接OA,OB后,可證∠OAP=∠OBP90°,其依據(jù)是:直徑所對(duì)的圓周角是直角;

由此可證明直線PA,PB都是O的切線,其依據(jù)是:經(jīng)過半徑外端,且與半徑垂直的直線是圓的切線.

故答案為:直徑所對(duì)的圓周角是直角;經(jīng)過半徑外端,且與半徑垂直的直線是圓的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,已知,,點(diǎn)的延長(zhǎng)線上,點(diǎn)的延長(zhǎng)線上,有下列結(jié)論:①;②;③;④若,則點(diǎn)的距離為.則其中正確結(jié)論的個(gè)數(shù)是( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)接于⊙OP上一點(diǎn),連接PD、PC

1)∠CPD=______°

2)若DC=4,CP=2,求DP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ACBC2,正方形CDEF的頂點(diǎn)D、F分別在AC、BC邊上,設(shè)CD的長(zhǎng)度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示yx之間的函數(shù)關(guān)系的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,割線ABC與⊙O相交于B、C兩點(diǎn),D為⊙O上一點(diǎn),E為弧BC的中點(diǎn),OEBCFDEACG,∠ADG=∠AGD

1)求證明:AD是⊙D的切線;

2)若∠A60°,⊙O的半徑為4,求ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與軸相交于點(diǎn)、點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線上一動(dòng)點(diǎn), 聯(lián)結(jié)交線段于點(diǎn)

1)求這條拋物線的解析式,并寫出頂點(diǎn)坐標(biāo);

2)求的正切值;

3)當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過A1,0)、B(﹣3,0),C0,﹣3)三點(diǎn),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)Pm,n)是線段AD上的動(dòng)點(diǎn),過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q

1)求直線AD及拋物線的解析式;

2)求線段PQ的長(zhǎng)度lm的關(guān)系式,m為何值時(shí),PQ最長(zhǎng)?

3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))R,使得P、Q、D、R為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,的平分線交于點(diǎn)E,交的延長(zhǎng)線于F,以為鄰邊作平行四邊形

1)證明平行四邊形是菱形;

2)若,連結(jié),①求證:;②求的度數(shù);

(3)若,,M的中點(diǎn),求的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y2x6與雙曲線k0)的一個(gè)交點(diǎn)為Am2),與x軸交于點(diǎn)B,與y軸交于點(diǎn)C

1)求點(diǎn)B的坐標(biāo)及k的值;

2)若點(diǎn)Px軸上,且△APC的面積為16,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案