【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
【答案】
(1)證明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵M(jìn)N∥AB,即CE∥AD,
∴四邊形ADEC是平行四邊形,
∴CE=AD
(2)解:四邊形BECD是菱形,
理由是:∵D為AB中點,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四邊形BECD是平行四邊形,
∵∠ACB=90°,D為AB中點,
∴CD=BD,
∴四邊形BECD是菱形
(3)當(dāng)∠A=45°時,四邊形BECD是正方形,理由是:
解:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D為BA中點,
∴CD⊥AB,
∴∠CDB=90°,
∵四邊形BECD是菱形,
∴菱形BECD是正方形,
即當(dāng)∠A=45°時,四邊形BECD是正方形
【解析】(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.
【考點精析】本題主要考查了平行四邊形的判定與性質(zhì)和菱形的判定方法的相關(guān)知識點,需要掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x=2時,代數(shù)式ax-2x的值為4,當(dāng)x=-2時,這個代數(shù)式的值為( )
A. -8B. -4C. -2D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,以AB為邊在正方形內(nèi)作等邊△ABE,連接DE,CE,則∠CED的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,ABCD中,BE,CF分別是∠ABC和∠BCD的一平分線,BE,CF相交于點O.
(1)求證:BE⊥CF;
(2)試判斷AF與DE有何數(shù)量關(guān)系,并說明理由;
(3)當(dāng)△BOC為等腰直角三角形時,四邊形ABCD是何特殊四邊形?
(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是( )
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐的底面半徑為4cm,母線長為5cm,則這個圓錐的側(cè)面積是( )
A.20πcm2
B.20cm2
C.40πcm2
D.40cm2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com