【題目】如圖,拋物線yax2+bx+ca≠0)與x軸交于點A1,0)和B,與y軸的正半軸交于點C,下列結(jié)論:①abc0;②4a2b+c0;③2ab0,其中正確的個數(shù)為( 。

A.0B.1C.2D.3

【答案】C

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點判斷c0的關(guān)系,進而判斷①;根據(jù)x=2時,y0可判斷②;根據(jù)對稱軸x=1求出2ab的關(guān)系,進而判斷③.

①由拋物線開口向下知a0,

∵對稱軸位于y軸的左側(cè),

a、b同號,即ab0

∵拋物線與y軸交于正半軸,

c0,

abc0;

故①正確;

②如圖,當x=2時,y0,則4a2b+c0

故②正確;

③∵對稱軸為x=>﹣1,

2ab,即2ab0,

故③錯誤;

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】問題:如圖①,在等邊三角形ABC內(nèi)有一點P,且PA2,PB=,PC1,求∠BPC的度數(shù)和等邊三角形ABC的邊長.

李明同學的思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖②),連接PP′,可得△PPB是等邊三角形,而△PPA又是直角三角形(由勾股定理的逆定理可證),可得∠APB °,所以∠BPC=∠APB °,還可證得△ABP是直角三角形,進而求出等邊三角形ABC的邊長為 ,問題得到解決.

1)根據(jù)李明同學的思路填空:∠APB °,∠BPC=∠APB °,等邊三角形ABC的邊長為

2)探究并解決下列問題:如圖③,在正方形ABCD內(nèi)有一點P,且PA,PB,PC1.求∠BPC的度數(shù)和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBCD,BEACE,MAB邊的中點,連結(jié)ME、MD、ED,設(shè)AB=10,∠DBE=30°,則EDM的面積為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0)、B兩點,與y軸交于點C 03),點P在該拋物線的對稱軸上,且縱坐標為2

1)求拋物線的表達式以及點P的坐標;

2)當三角形中一個內(nèi)角α是另一個內(nèi)角β的兩倍時,我們稱α為此三角形的“特征角”.

D在射線AP上,如果∠DAB為△ABD的特征角,求點D的坐標;

E為第一象限內(nèi)拋物線上一點,點Fx軸上,CEEF,如果∠CEF為△ECF的特征角,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】河南省政府為促進農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),計劃扶持興建一批新型鋼管裝配式大棚,如圖1所示線段AB、BD分別為大棚的墻高和跨度,AC表示保溫板的長,已知墻高AB3米,墻面與保溫板所成的角∠BAC150°,在點D處測得A點、C點的仰角分別為9°,156°,如圖2所示求保溫板AC的長是多少米?(精確到0.1米)(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈016,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28,1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖中,P是斜邊AC上一個動點,以即為直徑作BC于點D,與AC的另一個交點E,連接DE

1)當時,

①若,求的度數(shù);

②求證;

2)當,時,

①是含存在點P,使得是等腰三角形,若存在求出所有符合條件的CP的長;

②以D為端點過P作射線DH,作點O關(guān)于DE的對稱點Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

背景閱讀:旋轉(zhuǎn)就是將圖形上的每一點在平面內(nèi)繞著旋轉(zhuǎn)中心旋轉(zhuǎn)固定角度的位置移動,其中是過程,轉(zhuǎn)是結(jié)果.旋轉(zhuǎn)作為圖形變換的一種,具備圖形旋轉(zhuǎn)前后對應點到旋轉(zhuǎn)中心的距離相等:對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角:旋轉(zhuǎn)前、后的圖形是全等圖形等性質(zhì).所以充分運用這些性質(zhì)是在解決有關(guān)旋轉(zhuǎn)問題的關(guān)。

實踐操作:如圖1,在RtABC中,∠B90°,BC2AB12,點D,E分別是邊BCAC的中點,連接DE,將△EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α

問題解決:(1)①當α時,   ;②當α180°時,   

2)試判斷:當0°≤a360°時,的大小有無變化?請僅就圖2的情形給出證明.

問題再探:(3)當△EDC旋轉(zhuǎn)至A,DE三點共線時,求得線段BD的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,□ABCD的對角線AC,BD相交于點OE、F、G、H分別是OAOB、OC、OD的中點,那么□ABCD與四邊形EFGH是否是位似圖形?為什么?

查看答案和解析>>

同步練習冊答案