【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖①,在Rt△ABC中,∠A=90°,AB=kAC,點(diǎn)D是AB上一點(diǎn),DE∥BC.
填空:BD,CE的數(shù)量關(guān)系為 ;位置關(guān)系為 ;
(2)類比探究
如圖②,將△ADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α≤90°),連接BD,CE,請(qǐng)問(wèn)(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由.
(3)拓展延伸
在(2)的條件下,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,直線BD,CE交于點(diǎn)F,若AC=1,AB=,當(dāng)∠ACE=15°時(shí),請(qǐng)直接寫出BF的長(zhǎng).
【答案】(1)問(wèn)題發(fā)現(xiàn):BD=kCE;BD⊥CE;(2)類比探究:(1)中的結(jié)論還成立,理由見(jiàn)解析;(3)拓展延伸:BF的長(zhǎng)為或.
【解析】
(1)由平行線分線段成比例可得,由已知條件即可得BD=kEC;由∠A=90°即可得出BD⊥CE;
(2)通過(guò)證明△ABD∽△ACE,可得=k,即可得BD=kEC;再證出∠BFC=90°,即可得出BD⊥CE;
(3)分兩種情況討論,由相似三角形的性質(zhì)可得∠ACE=∠ABD,即可證∠BFC=90°,由直角三角形的性質(zhì)和勾股定理可求BF的值.
(1)問(wèn)題發(fā)現(xiàn):
解:∵DE∥BC,
∴=,
∵AB=kAC,
∴BD=kCE,
∵∠A=90°,
∴AB⊥AC,
∴BD⊥CE;
故答案為:BD=kCE;BD⊥CE;
(2)類比探究:
解:(1)中的結(jié)論還成立,理由如下:
延長(zhǎng)CE交BD于F,如圖②所示:
由旋轉(zhuǎn)的性質(zhì)可知,∠BAD=∠CAE,
∵DE∥BC,
∴=,
∴=,
∴△ABD∽△ACE,
∴==k,∠ABD=∠ACE,
∴BD=kEC;
∵∠CBF+∠BCF=∠ABD+∠ABC+∠BCF=∠ACE+∠BCF+∠ABC=∠ACB+∠ABC=90°,
∴∠BFC=90°,
∴BD⊥CE;
(3)拓展延伸:
解:由旋轉(zhuǎn)的性質(zhì)可知:∠BAD=∠CAE
∵=,
∴△ABD∽△ACE,
∴∠ACE=15°=∠ABD,
∵∠ABC+∠ACB=90°,
∴∠FBC+∠FCB=90°,
∴∠BFC=90°,
∵∠BAC=90°,
∴tan∠ABC=,
∴∠ABC=30°,
∴∠ACB=60°,
分兩種情況:
①0°<α≤90°時(shí),如圖②所示:
∴在Rt△BAC中,∠ABC=30°,AC=1,
∴BC=2AC=2,
∵在Rt△BFC中,∠CBF=30°+15°=45°,BC=2,
∴BF=CF=;
②α>90°時(shí),如圖③所示:
設(shè)CF=a,在BF上取點(diǎn)G,使∠BCG=15°
∵∠BCF=60°+15°=75°,∠CBF=∠ABC﹣∠ABD=30°﹣15°=15°,
∴∠CFB=90°,
∴∠GCF=60°,∠CBF=∠BCG,
∴CG=BG=2a,GF=a.
∴BF=BG+GF=(2+)a,
∵CF2+BF2=BC2
∴a2+(2a+a) 2=22,
解得:a2=2﹣,
∴a=,
∴BF=(2+)===;
即:BF的長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O直徑,半徑OC⊥AB,連接AC,∠CAB的平分線AD分別交OC于點(diǎn)E,交于點(diǎn)D,連接CD、OD,以下三個(gè)結(jié)論:①AC∥OD;②AC=2CD;③線段CD是CE與CO的比例中項(xiàng),其中所有正確結(jié)論的序號(hào)是( )
A.①②B.②③
C.①③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1,且過(guò)點(diǎn)(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有錯(cuò)誤的結(jié)論有( )個(gè).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個(gè)單位,得到△A1B1C1;
②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2.
(2)求點(diǎn)C1在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)詩(shī)詞大會(huì)》以“賞中華詩(shī)詞,尋文化基因、品生活之美”為基本宗旨,力求通過(guò)對(duì)詩(shī)詞知識(shí)的比拼及賞析,帶動(dòng)全民重溫那些曾經(jīng)學(xué)過(guò)的古詩(shī)詞,分享詩(shī)詞之美,感受詩(shī)詞之趣,從古人的智慧和情懷中汲取營(yíng)養(yǎng),涵養(yǎng)心靈,自開(kāi)播以來(lái)深受廣大師生的喜愛(ài),某中學(xué)為了解學(xué)校學(xué)生的詩(shī)詞水平,從八、九年級(jí)各隨機(jī)抽取了20名學(xué)生進(jìn)行了測(cè)試,并將八、九年級(jí)測(cè)試成績(jī)(百分制,單位:分)整理如下:
收集數(shù)據(jù)
八年級(jí) 93 92 84 55 85 82 66 74 88 67 87 87 67 61 87 61 78 57 72 75
九年級(jí) 68 66 79 92 86 87 61 86 90 83 90 78 70 67 53 79 86 71 61 89
整理數(shù)據(jù)按如下分?jǐn)?shù)段整理數(shù)據(jù),并補(bǔ)全表格:
測(cè)試成績(jī)x(分) | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
八 | 2 | 4 | |||
九 | 1 | 5 | 5 | 6 | 3 |
說(shuō)明:測(cè)試成績(jī)x(分),其中x≥80為優(yōu)秀,70≤x<80為良好,60≤x<70為合格,0≤x<60為不合格)
分析數(shù)據(jù)補(bǔ)全下列表格中的統(tǒng)計(jì)量:
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
八 | 75.9 | 76.5 | |
九 | 77.1 | 79 | 86 |
得出結(jié)論
(1)在此次測(cè)試中,有位同學(xué)的成績(jī)是78span>分,在他所在的年級(jí)屬于中等偏上,則這位同學(xué)屬于哪個(gè)年級(jí)?
(2)若九年級(jí)有800名學(xué)生,估計(jì)九年級(jí)詩(shī)詞水平達(dá)到優(yōu)秀的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則
(x2﹣1)=y2,原方程化為y2﹣5y+4=0.①
解得y1=1,y2=4
當(dāng)y=1時(shí),x2﹣1=1.∴x2=2.∴x=±;
當(dāng)y=4時(shí),x2﹣1=4,∴x2=5,∴x=±.
∴原方程的解為x1=,x2=﹣,x3=,x4=﹣
解答問(wèn)題:
(1)填空:在由原方程得到方程①的過(guò)程中,利用 法達(dá)到了降次的目的,體現(xiàn)了 的數(shù)學(xué)思想.
(2)解方程:x4﹣x2﹣6=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸的兩個(gè)交點(diǎn)分別為,,與軸相交于點(diǎn).
(1)求拋物線的表達(dá)式;
(2)聯(lián)結(jié)、,求的正切值;
(3)點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)以每件元的價(jià)格購(gòu)進(jìn)一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量(件)與每件的銷售價(jià)(元)滿足一次函數(shù)關(guān)系.
(1)求商場(chǎng)銷售這種商品每天的銷售利潤(rùn) (元)與每件銷售價(jià)(元)之間的函數(shù)關(guān)系式.
(2)商場(chǎng)每天銷售這種商品的銷售利潤(rùn)能否達(dá)到元?如果能,求出此時(shí)的銷售價(jià)格;如果不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長(zhǎng)線于點(diǎn)F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=6,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com