【題目】先閱讀下列解題過程,再解答問題:

-5+7=-5+(-)+7+=[(-5)+7]+[(-)+]=2+=2.

上述方法叫做拆項法,依照上述方法計算:

(1)7+(-7);

(2)(-2018)+(-2017)+4036+(-1).

【答案】 (1)-;(2)-.

【解析】

按示例的方法求解即可.

(1)7(7),

=7++(-7)+(-)

=[7+(-7)]+[+(-)],

=0()

=-;.

(2)(2018)(2017)4036(1)

=(-2018)+(-)+(-2017)+(-)+4036++(-1)+(-)

=[(-2018)+(-2017)+4036+(-1)]+[(-)+(-)++(-)]

=0+(-)

=-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)等式和不等式的性質(zhì),可以得到:若a﹣b>0,則a>b;若a﹣b=0,則a=b;若a﹣b<0,則a<b.這是利用作差法比較兩個數(shù)或兩個代數(shù)式值的大。

(1)試比較代數(shù)式5m2﹣4m+24m2﹣4m﹣7的值之間的大小關(guān)系;

(2)已知A=5m2﹣4(),B=7(m2﹣m)+3,請你運用前面介紹的方法比較代數(shù)式AB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),稱后的紀錄如下:

回答下列問題:

(1)這8筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重 ______  千克;

(2)這8筐白菜中,最重的與最輕的相差______ 千克;

(3)這8筐白菜一共重多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4月的某天小欣在“A超市買了雀巢巧克力趣多多小餅干10包,已知雀巢巧克力每包22元,趣多多小餅干每包2元,總共花費了80元.

(1)請求出小欣在這次采購中,雀巢巧克力趣多多小餅干各買了多少包?

(2)“期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計購物超過50元后,超過50元的部分打九折;在B超市累計購物超過100元后,超過100元的部分打八折.

①請問期間,若小欣購物金額超過100元,去哪家超市購物更劃算?

期間,小欣又到“B超市購買了一些雀巢巧克力,請問她至少購買多少包時,平均每包價格不超過20元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為(
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個圓柱體的側(cè)面展開圖為長方形ABCD,若AB=6.28cm,BC=18.84cm,則該圓柱體的體積是多少?(π3.14,結(jié)果精確到十分位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)【問題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點,ECD邊的中點,AE平分DAM

【探究展示】(1)證明:AM=AD+MC;

【拓展延伸】(2)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1中的結(jié)論是否成立?請作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點A順時針旋轉(zhuǎn)90°得到(點B′與點B是對應(yīng)點,點C′與點C是對應(yīng)點),連接CC′,則∠CC′B′的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB與CD交于點O,OM為射線.

(1)寫出∠BOD的對頂角;

(2)寫出∠BOD與∠COM的鄰補角;

(3)已知∠AOC=70°,∠BOM=80°,求∠DOM和∠AOM的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案