如圖,Rt△ABC中,∠C=90°,D是AB上一點,以BD為直徑的⊙O切AC于點E,交BC于點F,OG⊥BC于G點.

(1)求證:CE=OG; 

(2)若BC=3cm,,求線段AD的長.

 

【答案】

(1)首先連接OE,由⊙O切AC于點E,OG⊥BC,Rt△ABC中,∠C=Rt∠,易證得四邊形OGCE是矩形,則可證得CE=OG;(2)

【解析】

試題分析:(1)首先連接OE,由⊙O切AC于點E,OG⊥BC,Rt△ABC中,∠C=Rt∠,易證得四邊形OGCE是矩形,則可證得CE=OG;

(2)由BC=3cm,,可求得AB的長,易證得△AEO∽△ACB,然后根據(jù)相似三角形的對應(yīng)邊成比例,可求得OB的長,繼而求得AD的長.

(1)連接OE

∵⊙O切AC于點E,

∴OE⊥AC,即∠OEC=90°,

∵OG⊥BC,

∴∠CGO=90°,

∵Rt△ABC中,∠C=Rt∠,

∴四邊形OGCE是矩形,

∴CE=OG;

(2)在Rt△ABC中,

∵BC=3cm,

∴AB=BC÷cosB=5(cm),

∵∠A=∠A,∠AEO=∠ACB=90°,

∴△AEO∽△ACB,

,即,解得

考點:切線的性質(zhì)、矩形的判定與性質(zhì)、相似三角形的判定與性質(zhì),三角函數(shù)

點評:此題綜合性較強(qiáng),難度適中,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點邊上一點,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習(xí)冊答案