【題目】扶貧攻堅活動中,城南中學(xué)計劃選購甲、乙兩種物品慰問貧困戶.已知甲物品的單價比乙物品的單價高10元,若用500元單獨購買甲物品與450元單獨購買乙物品的數(shù)量相同.

(1)請問甲、乙兩種物品的單價各為多少?

(2)如果該單位計劃購買甲、乙兩種物品共55件,總費用不少于5000元且不超過5020元,通過計算得出共有幾種選購方案?

【答案】1)甲種物品的單價為100元,乙種物品的單價為90元;(2)共有3種選購方案.

【解析】

(1)設(shè)乙種物品單價為x元,則甲種物品單價為(x+10)元,根據(jù)數(shù)量相同列分式方程求解即可;

(2)設(shè)購買甲種物品y件,則乙種物品購進(jìn)(55-y)件,根據(jù)總費用的條件列不等式,求出y的范圍,其整數(shù)解的個數(shù)即方案數(shù);

解:(1)設(shè)乙種物品單價為x, 則甲種物品單價為(x+10)元,由題意得:

,

解得x=90.

經(jīng)檢驗,x=90是方程的解,

∴甲種物品的單價為100元,乙種物品的單價為90元;

(2)設(shè)購買甲種物品y,則乙種物品購進(jìn)(55y)件,

由題意得:5000≤100y+90(55y)≤5020

解得5≤y≤7.

∴共有3種選購方案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,將△ABC繞點C逆時針旋轉(zhuǎn)得到△A1B1C,旋轉(zhuǎn)角為ɑ(0°<ɑ<90°),連接BB1.設(shè)CB1AB于點D,A1B1分別交AB、AC于點E,F(xiàn).

(1)求證:△BCD≌△A1CF;

(2)若旋轉(zhuǎn)角ɑ30°,

①請你判斷△BB1D的形狀;

②求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,已知∠C=90°,B=50°,點D在邊BC上,BD=2CD(如圖).把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,使點B恰好落在初始RtABC的邊上,得到△A'B'C',則有下列結(jié)論:①線段BD也繞點D逆時針旋轉(zhuǎn)了m度;②點B′可能落在AB邊上;③△ADA'為等邊三角形;④m可能等于120.其中正確結(jié)論的序號是_____(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中放入一個矩形紙片ABCO,將紙片翻折后,點B恰好落在軸上,記為,折痕為CE.直線CE的關(guān)系式是,與軸相交于點F,且AE=3.

(1)求OC長度;

(2)求點的坐標(biāo);

(3)求矩形ABCO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紅紅和娜娜按如圖所示的規(guī)則玩一次錘子、剪刀、布游戲,下列命題中錯誤的是(

A.紅紅不是勝就是輸,所以紅紅勝的概率為

B.紅紅勝或娜娜勝的概率相等

C.兩人出相同手勢的概率為

D.娜娜勝的概率和兩人出相同手勢的概率一樣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC中,CDABD,且BD=4,AD=6,CD=8

1)求證:∠ACB=ABC;

2)如圖2EAC的中點,連結(jié)DE.動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運(yùn)動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運(yùn)動,當(dāng)其中一點到達(dá)終點時另一個點也停止運(yùn)動.設(shè)點M運(yùn)動的時間為t(秒),

①若MNBC平行,求t的值;

②問在點M運(yùn)動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:P是正方形內(nèi)一點,△ABP旋轉(zhuǎn)后能與△CBE重合.

(1)△ABP旋轉(zhuǎn)的旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)了多少度?

(2)BP=2,PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2分)矩形的一內(nèi)角平分線把矩形的一條邊分成35兩部分,則該矩形的周長是()

A. 16 B. 2216 C. 26 D. 2226

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點EEG∥CDAF于點G,連接DG.

(1)求證:四邊形EFDG是菱形;

(2)連接DE,交AFO點,試探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

同步練習(xí)冊答案