【題目】如圖:在RtABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN//ABDAB上一點(diǎn),過(guò)點(diǎn)DDEBC,交直線MN于點(diǎn)E,垂足為F,連結(jié)CD,BE

1)求點(diǎn)DAB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由.

2)在(1)的條件下,當(dāng)∠A= 時(shí),四邊形BECD是正方形.說(shuō)明你的理由.

【答案】1)平行四邊形BECD是菱形,理由見解析;(245°

【解析】

1)先證明ACDE,得出四邊形BECD是平行四邊形,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半證出CD=BD,得出四邊形BECD是菱形;
2)先求出∠ABC=45°,再根據(jù)菱形的性質(zhì)求出∠DBE=90°,即可證出結(jié)論.

1)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),四邊形BECD是菱形;理由如下:
DEBC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=DFB,
ACDE,
MNAB,即CEAD
∴四邊形ADEC是平行四邊形,
CE=AD
DAB中點(diǎn),
AD=BD
BD=CE
BDCE,
∴四邊形BECD是平行四邊形,
∵∠ACB=90°,DAB中點(diǎn),
CD=AB=BD

∴四邊形BECD是菱形;

2)當(dāng)∠A=45°時(shí),四邊形BECD是正方形;理由如下:
∵∠ACB=90°,∠A=45°
∴∠ABC=45°,
∵四邊形BECD是菱形,
∴∠ABC=DBE
∴∠DBE=90°,
∴四邊形BECD是正方形.
故答案為:45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在已知的平面直角坐標(biāo)系中,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,若A,B兩點(diǎn)的坐標(biāo)分別是A(-1,0),B(0,3).

(1)將△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1;

(2)以點(diǎn)O為位似中心,與△ABC位似的△A2B2C2滿足A2B2:AB=2:1,請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出△A2B2C2,并直接填寫△A2B2C2的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

1637 年笛卡兒(RDescartes,1596 1650)在其《幾何學(xué)》中,首次應(yīng)用待定系數(shù)法將 4 次方程分解為兩個(gè) 2 次方程求解,并最早給出因式分解定理.

他認(rèn)為,若一個(gè)高于二次的關(guān)于 x 的多項(xiàng)式能被 () 整除,則其一定可以分解為 () 與另外一個(gè)整式的乘積,而且令這個(gè)多項(xiàng)式的值為 0 時(shí), x = a 是關(guān)于 x 的這個(gè)方程的一個(gè)根.

例如:多項(xiàng)式 可以分解為 () 與另外一個(gè)整式 M 的乘積,即

時(shí),可知 x =1 為該方程的一個(gè)根.

關(guān)于笛卡爾的待定系數(shù)法原理,舉例說(shuō)明如下: 分解因式:

觀察知,顯然 x=1 時(shí),原式 = 0 ,因此原式可分解為 () 與另一個(gè)整式的積.

令:,則=,因等式兩邊 x 同次冪的系數(shù)相等,則有:,得,從而

此時(shí),不難發(fā)現(xiàn) x= 1 是方程 的一個(gè)根.

根據(jù)以上材料,理解并運(yùn)用材料提供的方法,解答以下問(wèn)題:

1)若 是多項(xiàng)式 的因式,求 a 的值并將多項(xiàng)式分解因式;

2)若多項(xiàng)式 含有因式 ,求a+ b 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)冰箱、彩電進(jìn)行銷售.相關(guān)信息如下表:

進(jìn)價(jià)(元/臺(tái))

售價(jià)(元/臺(tái))

冰箱

2500

彩電

2000

1)若商場(chǎng)用80000元購(gòu)進(jìn)冰箱的數(shù)量與用64000元購(gòu)進(jìn)彩電的數(shù)量相等,求表中a的值.

2)為了滿足市場(chǎng)需要求,商場(chǎng)決定用不超過(guò)9萬(wàn)元采購(gòu)冰箱、彩電共50臺(tái),且冰箱的數(shù)量不少于彩電數(shù)量的

該商場(chǎng)有哪幾種進(jìn)貨方式?

若該商場(chǎng)將購(gòu)進(jìn)的冰箱、彩電全部售出,獲得的最大利潤(rùn)為w元,請(qǐng)用所學(xué)的函數(shù)知識(shí)求出w的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD=4,EAB的中點(diǎn),PAC上一個(gè)動(dòng)點(diǎn),則EP+BP的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種油菜籽在相同條件下的發(fā)芽實(shí)驗(yàn)結(jié)果如表:

1a ,b ;

2)這種油菜籽發(fā)芽的概率估計(jì)值是多少?請(qǐng)簡(jiǎn)要說(shuō)明理由;

3)如果該種油菜籽發(fā)芽后的成秧率為90%,則在相同條件下用10000粒該種油菜籽可得到油菜秧苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊ADBC上,頂點(diǎn)FH在菱形ABCD的對(duì)角線BD上.

1)求證:BG=DE;

2)若EAD中點(diǎn),FH=2,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形紙片ABCD中,AB=6,BC=8

1)將矩形紙片沿BD折疊,點(diǎn)A落在點(diǎn)E處(如圖①),設(shè)DEBC相交于點(diǎn)F,求BF的長(zhǎng);

2)將矩形紙片折疊,使點(diǎn)B與點(diǎn)D重合(如圖②),求折痕GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1)(+17)+(-12);

210+(―)―6―(―0.25);

3)(48 ;

4)|-54|-5×(-221÷(-

查看答案和解析>>

同步練習(xí)冊(cè)答案