【題目】如圖,⊙O在矩形ABCD內(nèi),且與ABBC邊都相切,EBC上一點,將△DCE沿DE對折,點C的對稱點F恰好落在⊙O上,已知AB=20,BC=25,CE=10,則⊙O的半徑為______.

【答案】5

【解析】

過點FAD,BC的垂線GH,過OMNBCABM,GHN,易證DGF∽△FHE,利用相似三角形的性質(zhì)即可求出DG=HC=16,GF=12,FH=8,設(shè)圓O的半徑為r,在直角三角形FON中,利用勾股定理可得關(guān)于r的方程,解方程求出r的值即可.

過點FAD,BC的垂線GH,OMNBCABM,GHN,

∵四邊形ABCD是矩形,

∴∠C=90°,

∵將DCE沿DE對折,點C的對稱點F恰好落在O上,

∴∠DFE=90°,

∴∠GFD+HFE=90°

∵∠GFD+GDF=90°,

∴∠GDF=HFE

∴△DGF∽△FHE

,

AB=20BC=25,CE=10

DG=HC=16,GF=12FH=8,

設(shè)圓O的半徑為r,

在直角三角形FON, ,

解得:r=5

故答案為:5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+2的圖象交x軸于點A(﹣1,0),點B40)兩點,交y軸于點C.動點M從點A出發(fā),以每秒2個單位長度的速度沿AB方向運動,過點MMNx軸交直線BC于點N,交拋物線于點D,連接AC,設(shè)運動的時間為t秒.

1)求二次函數(shù)yax2+bx+2的表達式;

2)連接BD,當t時,求DNB的面積;

3)在直線MN上存在一點P,當PBC是以∠BPC為直角的等腰直角三角形時,求此時點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學準各去濕地公園開展社會實踐活動,學校給出A:十八彎,B:長廣溪,C:九里河,D:貢湖灣,共四個目的地.為了解學生最喜歡哪一個目的地,隨機抽取了部分學生進行調(diào)査,并將調(diào)査結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.請回答下列問題:

1)這次被調(diào)査的學生共有  人.

2)請你將條形統(tǒng)計圖補充完整.

3)扇形統(tǒng)計圖中D項目對立的扇形的圓心角度數(shù)是  °

4)已知該校學生2400人,請根據(jù)調(diào)査結(jié)果估計該校最喜歡去長廣溪濕地公園的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長AB是方程的一個根,動點PAB3cm/s的速度移動,動直線EF從與AB重合的位置開始向上以1cm/s速度移動(EFAB),EFAD、ACBCE、M、F。設(shè)運動時間為t.

1)當t=1時,四邊形MFBP的面積為 .t表示△APM的面積為 .

2)在某一時刻t,使△APM與四邊形MFBP的面積相等,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,AC=BC=2,以斜邊AB上的點O為圓心的圓分別與AC、BC相切于點D、E,與AB分別相交于點G、H,且DG的延長線與CB的延長線交于點F,分析下列四個結(jié)論:①HG=2;②BG=BF;③AH=BG=;④CF= .其中正確的結(jié)論個數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知A(2,0)、B(3,1)、C(1,3).

(1)畫出ABC沿x軸負方向平移2個單位后得到的△A1B1C1,并寫出B1的坐標   ;

(2)以A1點為旋轉(zhuǎn)中心,將△A1B1C1逆時針方向旋轉(zhuǎn)90°得△A1B2C2,畫出△A1B2C2,并寫出C2的坐標   ;

(3)直接寫出過B、B1、C2三點的圓的圓心坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,折疊矩形ABCD,使點B落在對角線AC上的點F處,若BC8,AB6,則線段CE的長度是( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家限購以來,二手房和新樓盤的成交量迅速下降.據(jù)統(tǒng)計,某市限購前某季度二手房和新樓盤成交量為9500套;限購后,同一季度二手房和新樓盤的成交量共4425套.其中二手房成交量比限購前減少55%,新樓盤成交量比限購前減少52%.

1)問限購后二手房和新樓盤各成交多少套?

2)在成交量下跌的同時,房價也大幅跳水.某樓盤限購前均價為12000/m2,限購后,房價經(jīng)過二次下調(diào)后均價為9720/m2,求平均每次下調(diào)的百分率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń夥匠獭?/span>

14(x-3) =36

2x2-4x10.

3-7x+6=0

4

5(y1)22y(1y)0.

查看答案和解析>>

同步練習冊答案