(2013年四川綿陽12分)為了從甲、乙兩名選手中選拔一個參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:

 甲、乙射擊成績統(tǒng)計表

 

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

    

    

0

    

    

    

1

甲、乙射擊成績折線圖

(1)請補全上述圖表(請直接在表中填空和補全折線圖);

(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰應(yīng)勝出?說明你的理由;

(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?

 

【答案】

解:(1)根據(jù)折線統(tǒng)計圖得:

乙的射擊成績?yōu)椋?,4,6,8,7,7,8,9,9,10,

則平均數(shù)為(環(huán)),中位數(shù)為7.5(環(huán)),方差為

。

甲的射擊成績?yōu)?,6,7,6,2,7,7,?,8,9,平均數(shù)為7(環(huán)),

則甲第八環(huán)成績?yōu)?0﹣(9+6+7+6+2+7+7+8+9)=9(環(huán)),

所以甲的10次成績?yōu)椋?,6,7,6,2,7,7,9,8,9,中位數(shù)為7(環(huán)),方差為

。

補全圖表如下:

甲、乙射擊成績統(tǒng)計表

 

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

7

4

0

7

7.5

5.4

1

甲、乙射擊成績折線圖

(2)由于甲的方差小于乙的方差,甲比較穩(wěn)定,故甲勝出。

(3)如果希望乙勝出,應(yīng)該制定的評判規(guī)則為:平均成績高的勝出;如果平均成績相同,則隨著比賽的進(jìn)行,發(fā)揮越來越好者或命中滿環(huán)(10環(huán))次數(shù)多者勝出。因為甲乙的平均成績相同,乙只有第5次射擊比第四次射擊少命中1環(huán),且命中1次10環(huán),而甲第2次比第1次、第4次比第3次,第5次比第4次命中環(huán)數(shù)都低,且命中10環(huán)的次數(shù)為0次,即隨著比賽的進(jìn)行,乙的射擊成績越來越好。

【解析】(1)根據(jù)折線統(tǒng)計圖列舉出乙的成績,計算出甲的中位數(shù),方差,以及乙平均數(shù),中位數(shù)及方差,補全即可。

(2)計算出甲乙兩人的方差,比較大小即可做出判斷。

(3)希望甲勝出,規(guī)則改為9環(huán)與10環(huán)的總數(shù)大的勝出,因為甲9環(huán)與10環(huán)的總數(shù)為4環(huán)。

考點:統(tǒng)計表,折線統(tǒng)計圖,算術(shù)平均數(shù),中位數(shù),方差。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川綿陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川綿陽12分)如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標(biāo)為(0,﹣2),交x軸于A、B兩點,其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.

(1)求二次函數(shù)的解析式和B的坐標(biāo);

(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(biāo)(用含m的代數(shù)式表示);

(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標(biāo);如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川綿陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川綿陽12分)“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自2013年起逐月增加,據(jù)統(tǒng)計,該商城1月份銷售自行車64輛,3月份銷售了100輛.

(1)若該商城前4個月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?

(2)考慮到自行車需求不斷增加,該商城準(zhǔn)備投入3萬元再購進(jìn)一批兩種規(guī)格的自行車,已知A型車的進(jìn)價為500元/輛,售價為700元/輛,B型車進(jìn)價為1000元/輛,售價為1300元/輛.根據(jù)銷售經(jīng)驗,A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設(shè)所進(jìn)車輛全部售完,為使利潤最大,該商城應(yīng)如何進(jìn)貨?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川綿陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川綿陽12分)如圖,已知矩形OABC中,OA=2,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于E、F.

(1)若E是AB的中點,求F點的坐標(biāo);

(2)若將△BEF沿直線EF對折,B點落在x軸上的D點,作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川綿陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.

(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.

 

查看答案和解析>>

同步練習(xí)冊答案