【題目】ABC在平面直角坐標系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.

1ABC關于y軸對稱圖形為A1B1C1,畫出A1B1C1的圖形.

2)求ABC的面積.

3)若P點在x軸上,當BP+CP最小時,直接寫出BP+CP最小值為   

【答案】1)見解析;(22;(3

【解析】

1ABC關于y軸對稱圖形為A1B1C1,根據(jù)軸對稱的性質畫出三個點的對稱點再連接即可作出A1B1C1;

2)用割補法求ABC的面積即可;

3P點在x軸上,當BP+CP最小時,即可求出BP+CP最小值.

解:如圖所示,

1)如圖,A1B1C1即為所求;

2ABC的面積為:;

3)作點B關于x軸的對稱點B,

連接CBx軸于點P,此時BP+CP最小,

BP+CP的最小值即為CB

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調查,統(tǒng)計同學們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.

請根據(jù)圖中信息解決下列問題:

(1)共有   名同學參與問卷調查;

(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數(shù)約為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(10),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,得到A,B的對應點C,D,連接AC,BD,CD.

(1)直接寫出點C,D的坐標,求出四邊形ABDC的面積;

(2)x軸上是否存在一點F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,ABAC,∠BAC90°,DAC邊上一動點,且不與點AC重合,連接BD并延長,在BD延長線上取一點E,使AEAB,連接CE

1)若∠AED20°,則∠DEC   度;

2)若∠AEDa,試探索∠AED與∠AEC有怎樣的數(shù)量關系?并證明你的猜想;

3)如圖2,過點AAFBE于點F,AF的延長線與EC的延長線交于點H,求證:EH2+CH22AE2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)放假期間,小明和小華準備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山居民(記為C)、李莊古鎮(zhèn)(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.

(1)小明選擇去蜀南竹海旅游的概率為________;

(2)用畫樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P在第一象限,△ABP是邊長為2的等邊三角形,當點Ax軸的正半軸上運動時,點B隨之在y軸的正半軸上運動,運動過程中,點P到原點的最大距離是______;若將△ABPPA邊長改為,另兩邊長度不變,則點P到原點的最大距離變?yōu)?/span>______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一個數(shù)的平方等于,記為,這個數(shù)叫做虛數(shù)單位。那么和我們所學的實數(shù)對應起來就叫做復數(shù),表示為為實數(shù)),叫這個復數(shù)的實部, 叫做這個復數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似。

例如計算:

1填空: =_________, =____________.

2填空:①_________ _________ 。

3若兩個復數(shù)相等,則它們的實部和虛部必須分別相等,完成下列問題:已知, ,( 為實數(shù)),求的值。

4)試一試:請利用以前學習的有關知識將化簡成的形式。

5)解方程:x2 - 2x +4 = 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題的逆命題成立的是( 。

A.全等三角形的對應角相等

B.若三角形的三邊滿足,則該三角形是直角三角形

C.對頂角相等

D.同位角互補,兩直線平行

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,、分別為上的點,且,連并延長交

(1)當時,求的值;

(2)當時,求證:;

(3)當________時,中點.

查看答案和解析>>

同步練習冊答案