【題目】如圖,在△ABC中,BE平分∠ABC交AC于點(diǎn)E,過(guò)點(diǎn)E作ED∥BC交AB于點(diǎn)D.
(1)求證:AEBC=BDAC;
(2)如果=3,=2,DE=6,求BC的長(zhǎng).
【答案】(1)證明詳見(jiàn)解析;(2)10.
【解析】
試題分析:(1)由BE平分∠ABC交AC于點(diǎn)E,ED∥BC,可證得BD=DE,△ADE∽△ABC,然后由相似三角形的對(duì)應(yīng)邊成比例,證得AEBC=BDAC;
(2)根據(jù)三角形面積公式與=3,=2,可得AD:BD=3:2,然后由平行線分線段成比例定理,求得BC的長(zhǎng).
試題解析:(1)∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵DE∥BC,
∴∠DEB=∠CBE,
∴∠ABE=∠DEB,
∴BD=DE,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴,
∴AEBC=BDAC;
(2)解:設(shè)△ABE中邊AB上的高為h,
∴=,
∵DE∥BC,
∴,
∴,
∴BC=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,已知拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)坐標(biāo)為點(diǎn).
(1)求此拋物線的解析式;
(2)點(diǎn)為拋物線對(duì)稱(chēng)軸上一點(diǎn),當(dāng)最小時(shí),求點(diǎn)坐標(biāo);
(3)在第一象限的拋物線上有一點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)坐標(biāo);
(4)在軸下方拋物線上有一點(diǎn),面積為6,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為平行四邊形的邊上一動(dòng)點(diǎn),過(guò)點(diǎn)作直線垂直于,且直線與平行四邊形的另一邊交于點(diǎn).當(dāng)點(diǎn)從勻速運(yùn)動(dòng)時(shí),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,的面積為,能大致反映與函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2)、B(2,b)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求m,n的值;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),求△ABD的面積;
(3)在坐標(biāo)軸上是否存在異于D點(diǎn)的點(diǎn)P,使得S△PAB=S△DAB?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BC=20cm,P、Q、M、N分別從A、B、C、D出發(fā)沿AD、BC、CB、DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí)即停止.已知在相同時(shí)間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm.
(Ⅰ)當(dāng)x為何值時(shí),AP、ND長(zhǎng)度相等?
(Ⅱ)當(dāng)x為何值時(shí),以PQ、MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊能構(gòu)成一個(gè)三角形?
(Ⅲ)當(dāng)x為何值時(shí),以P、Q、M、N為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F是邊長(zhǎng)為4的正方形ABCD邊AD、AB上的動(dòng)點(diǎn),且AF=DE,BE交CF于點(diǎn)P,在點(diǎn)E、F運(yùn)動(dòng)的過(guò)程中,PA的最小值為( 。
A.2B.2C.4﹣2D.2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓內(nèi)接正三角形、正方形、正六邊形的邊長(zhǎng)之比為( )
A.1:2:3B.1::C.::1D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求的取值范圍;
(2)若為正整數(shù),且該方程的兩個(gè)根都是整數(shù),求的值并求出方程的兩個(gè)整數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過(guò)點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com