【題目】已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點(diǎn),
(1)如圖,E,F(xiàn)分別是AB,AC上的點(diǎn),且BE=AF,求證:△DEF為等腰直角三角形;
(2)若E,F(xiàn)分別為AB,CA延長(zhǎng)線上的點(diǎn),仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?證明你的結(jié)論.

【答案】
(1)證明:連接AD,

∵AB=AC,∠BAC=90°,D為BC的中點(diǎn),

∴AD⊥BC,BD=AD.

∴∠B=∠DAC=45°

又BE=AF,

∴△BDE≌△ADF(SAS).

∴ED=FD,∠BDE=∠ADF.

∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.

∴△DEF為等腰直角三角形


(2)解:△DEF為等腰直角三角形.

證明:若E,F(xiàn)分別是AB,CA延長(zhǎng)線上的點(diǎn),如圖所示:

連接AD,

∵AB=AC,

∴△ABC為等腰三角形,

∵∠BAC=90°,D為BC的中點(diǎn),

∴AD=BD,AD⊥BC(三線合一),

∴∠DAC=∠ABD=45°.

∴∠DAF=∠DBE=135°.

又AF=BE,

∴△DAF≌△DBE(SAS).

∴FD=ED,∠FDA=∠EDB.

∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.

∴△DEF仍為等腰直角三角形.


【解析】(1)先連接AD,構(gòu)造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底邊上的中線,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可證出:△BED≌△AFD,從而得出DE=DF,∠BDE=∠ADF,從而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)還是證明:△BED≌△AFD,主要證∠DAF=∠DBE(∠DBE=180°﹣45°=135°,∠DAF=90°+45°=135°),再結(jié)合兩組對(duì)邊對(duì)應(yīng)相等,所以兩個(gè)三角形全等.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰直角三角形的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角三角形ABC中,∠BAC=90°,將△ABC沿直線BC向右平移得到△DEF,連結(jié)AD、AE,則下列結(jié)論中不成立的是( )

A.AD∥BE,AD=BE
B.∠ABE=∠DEF
C.ED⊥AC
D.△ADE為等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】梧州市特產(chǎn)批發(fā)市場(chǎng)有龜苓膏粉批發(fā),其中A品牌的批發(fā)價(jià)是每包20元,B品牌的批發(fā)價(jià)是每包25元,小王需購(gòu)買A、B兩種品牌的龜苓膏共1000包.

(1)若小王按需購(gòu)買A、B兩種品牌龜苓膏粉共用22000元,則各購(gòu)買多少包?

(2)憑會(huì)員卡在此批發(fā)市場(chǎng)購(gòu)買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購(gòu)買會(huì)員卡并用此卡按需購(gòu)買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.

(3)在(2)中,小王共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費(fèi)8元,若每包銷售價(jià)格A品牌比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的龜苓膏粉每包定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=112°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問(wèn):直線ON是否平分∠AOC?請(qǐng)說(shuō)明理由;
(2)將圖1中的三角板繞點(diǎn)O按每秒4°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為多少?
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄浚骸螦OM與∠NOC之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多項(xiàng)式x2+3x=3,可求得另一個(gè)多項(xiàng)式3x2+9x﹣4的值為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2 , 其中結(jié)論正確的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn) 為直線 上一點(diǎn),過(guò)點(diǎn) 作射線 ,使 ,將一直角三角板的直角頂點(diǎn)放在點(diǎn) 處,一邊 在射線 上,另一邊 在直線 的下方.

(1)將圖1中的三角板繞點(diǎn) 逆時(shí)針旋轉(zhuǎn)至圖 ,使一邊 的內(nèi)部,且恰好平分 ,問(wèn):此時(shí)直線 是否平分 ?請(qǐng)直接寫出結(jié)論:直線 (平分或不平分) .
(2)將圖1中的三角板繞點(diǎn) 以每秒 的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第 秒時(shí),直線 恰好平分銳角 ,則 的值為.(直接寫出結(jié)果)
(3)將圖1中的三角板繞點(diǎn) 順時(shí)針旋轉(zhuǎn),請(qǐng)?zhí)骄浚寒?dāng) 始終在 的內(nèi)部時(shí)(如圖3), 的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)舉例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形紙片ABCD中,AB=3,AD=5.如圖所示,折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ,當(dāng)點(diǎn)A′在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P.Q也隨之移動(dòng),若限定點(diǎn)P,Q分別在線段AB,AD邊上移動(dòng),則點(diǎn)A′在BC邊上可移動(dòng)的最大距離為(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,可以單獨(dú)用正三角形、正方形或正六邊形鑲嵌平面.
如果我們要同時(shí)用兩種不同的正多邊形鑲嵌平面,可能設(shè)計(jì)出幾種不同的組合方案?
問(wèn)題解決:
猜想1:是否可以同時(shí)用正方形、正八邊形兩種正多邊形組合進(jìn)行平面鑲嵌?
驗(yàn)證1:在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正方形和y個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角.根據(jù)題意,可得方程:90x+ y=360,整理得:2x+3y=8,
我們可以找到方程的正整數(shù)解為
結(jié)論1:鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著1個(gè)正方形和2個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角,所以同時(shí)用正方形和正八邊形兩種正多邊形組合可以進(jìn)行平面鑲嵌.
猜想2:是否可以同時(shí)用正三角形和正六邊形兩種正多邊形組合進(jìn)行平面鑲嵌?若能,請(qǐng)按照上述方法進(jìn)行驗(yàn)證,并寫出所有可能的方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案