【題目】閱讀計算:
閱讀下列各式:,,……
回答下列三個問題:
(1)驗證:(5×0.2)10=__________;510×0.210=__________.
(2)通過上述驗證,歸納得出: =__________;=__________.
(3)請應用上述性質(zhì)計算:
①
②.
科目:初中數(shù)學 來源: 題型:
【題目】在一元二次方程中,有著名的韋達定理:對于一元二次方程ax2+bx+c=0(a≠0),如果方程有兩個實數(shù)根x1,x2,那么x1+x2=﹣,x1x2=(說明:定理成立的條件△≥0).比如方程2x2﹣3x﹣1=0中,△=17,所以該方程有兩個不等的實數(shù)解.記方程的兩根為x1,x2,那么x1+x2=,x1x2=﹣,請根據(jù)閱讀材料解答下列各題:
(1)已知方程x2﹣3x﹣2=0的兩根為x1、x2,且x1>x2,求下列各式的值:
①x12+x22;②;
(2)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.
①是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,請說明理由.
②求使的值為整數(shù)的實數(shù)k的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,矩形ABCD中,點E在DC上且DE:EC=2:3,連接BE交對角線AC于點O.延長AD交BE的延長線于點F,則△AOF與△BOC的面積之比為( 。
A. 9:4B. 3:2C. 25:9D. 16:9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩輛汽車分別從A、B兩地同時出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設(shè)甲、乙兩車與B地的路程分別為y甲(km),y乙(km),甲車行駛的時間為x(h),y甲、y乙與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:
(1)乙車休息了 h.
(2)求乙車與甲車相遇后y乙關(guān)于x的函數(shù)表達式,并寫出自變量x的取值范圍.
(3)當兩車相距40km時,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若以一條線段為對角線作正方形,則稱該正方形為這條線段的“對角線正方形”.例如,圖①中正方形ABCD即為線段BD的“對角線正方形”.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點P從點C出發(fā),沿折線CA﹣AB以5cm/s的速度運動,當點P與點B不重合時,作線段PB的“對角線正方形”,設(shè)點P的運動時間為t(s),線段PB的“對角線正方形”的面積為S(cm2).
(1)如圖③,借助虛線的小正方形網(wǎng)格,畫出線段AB的“對角線正方形”.
(2)當線段PB的“對角線正方形”有兩邊同時落在△ABC的邊上時,求t的值.
(3)當點P沿折線CA﹣AB運動時,求S與t之間的函數(shù)關(guān)系式.
(4)在整個運動過程中,當線段PB的“對角線正方形”至少有一個頂點落在∠A的平分線上時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)語句畫圖,并回答問題,如圖,∠AOB內(nèi)有一點P.
(1)過點P畫PC∥OB交OA于點C,畫PD∥OA交OB于點D.
(2)寫出圖中與∠CPD互補的角 .(寫兩個即可)
(3)寫出圖中∠O相等的角 .(寫兩個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】又到一年豐收季,重慶外國語學!皣鴥(nèi)中考、高考、國內(nèi)保送、出國留學”捷報頻傳.作為準初三的初二年級學生希望抓緊暑期更好的提升自我.張同學采用隨機抽樣的方式對初二年級學生此次暑期生活的主要計劃進行了問卷調(diào)查,并將調(diào)查結(jié)果按照“A社會實踐類、B學習提高類、C游藝娛樂類、D其他”進行了分類統(tǒng)計,并繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖.(接受調(diào)查的每名同學只能在四類中選擇其中一種類型,不可多選或不選.)請根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計圖中表示B類的扇形的圓心角是 度,并補全條形統(tǒng)計圖;
(2)張同學已從被調(diào)查的同學中確定了甲、乙、丙、丁四名同學進行開學后的經(jīng)驗交流,并計劃在這四人中選出兩人的寶貴經(jīng)驗刊登在本班班刊上.請利用畫樹狀圖或列表的方法求出甲同學的經(jīng)驗刊登在班刊上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與x軸交于A、B兩點,與y軸交于點C.直線經(jīng)過拋物線與坐標軸的兩個交點B和C。
(1)求直線BC的解析式;
(2)點D是線段BC上的一個動點(與兩個端點均不重合),過點D引y軸的平行線PD交拋物線于點P,設(shè)拋物線的對稱軸為直線,如果以點P為圓心的⊙P與直線BC相切,請用點P的橫坐標x表示⊙P的半徑R。
(3)在(2)的基礎(chǔ)上判斷⊙P與直線的位置關(guān)系。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com