【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)F,點(diǎn)E在BD上,且
(1)求證:∠BAE=∠CAD;
(2)求證:△ABE∽△ACD.

【答案】
(1)證明:在△ABC與△AED中,

,

∴△ABC∽△AED,

∴∠BAC=∠EAD,

∴∠BAC﹣∠EAF=∠EAD﹣∠EAF,

即∠BAE=∠CAD;


(2)解:∵ ,

在△ABE與△ACD中,

∵∠BAE=∠CAD, ,

∴△ABE∽△ACD.


【解析】(1)根據(jù)相似三角形的判定方法三邊對應(yīng)成比例,兩三角形相似,得到△ABC∽△AED,得到對應(yīng)角相等,根據(jù)角的和差證明出∠BAE=∠CAD;(2)根據(jù)比例的性質(zhì)得到兩邊對應(yīng)成比例,再由夾角相等,得到兩三角形相似.
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的判定與性質(zhì),掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校的北大門是由相同菱形框架組成的伸縮電動推拉門,如圖是大門關(guān)閉時的示意圖,此時 菱形的邊長為0.5m,銳角都是50°.求大門的寬(結(jié)果精確到0.01,參考數(shù)據(jù):sin25°≈0.422 6,cos25°≈0.906 3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠A=C,DA平分∠BDF

1)求證:AECF

2BC平分∠DBE嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為一位旅行者在早晨8時從城市出發(fā)到郊外所走的路程單位:千米與時間單位:時的變量關(guān)系的圖象.根據(jù)圖象回答問題:

在這個變化過程中,自變量是______ ,因變量是______

時所走的路程是多少?他休息了多長時間?

他從休息后直至到達(dá)目的地這段時間的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,B=60°,AB=2cm,E、F分別是BC、CD的中點(diǎn),連接AE、EF、AF,則AEF的周長為( 。

A. 2cm B. 3 cm C. 4cm D. 3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空,完成下列說理過程

如圖,已知點(diǎn)A,O,B在同一條直線上,OE平分∠BOC,∠DOE=90°

求證:OD是∠AOC的平分線;

證明:如圖,因為OE是∠BOC的平分線,

所以∠BOE=∠COE.(  )

因為∠DOE=90°

所以∠DOC+∠ 。90°

且∠DOA+∠BOE=180°﹣∠DOE=  °.

所以∠DOC+∠ 。健螪OA+∠BOE.

所以∠ 。健稀 。

所以OD是∠AOC的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AECD于點(diǎn)F,交BC的延長線于點(diǎn)E

1)求證:DCBE

2)連接BF,若BFAE,求證:△ADF≌△ECF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了防治“新型冠狀病毒”,我市某小區(qū)準(zhǔn)備用5400元購買醫(yī)用口罩和洗手液發(fā)放給本小區(qū)住戶.若醫(yī)用口罩買800個,洗手液買120瓶,則錢還缺200元;若醫(yī)用口罩買1200個,洗手液買80瓶,則錢恰好用完.

1)求醫(yī)用口罩和洗手液的單價;

2)由于實(shí)際需要,除購買醫(yī)用口罩和洗手液外,還需增加購買單價為6元的N95口罩.若需購買醫(yī)用口罩,N95口罩共1200個,其中N95口罩不超過200個,錢恰好全部用完,則有幾種購買方案,請列方程計算.

查看答案和解析>>

同步練習(xí)冊答案