如圖,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,則下列等式成立的是( )
A.b2=ac
B.b2=ce
C.be=ac
D.bd=ae
【答案】分析:根據(jù)∠CDB=∠DBA,∠C=∠BDA=90°,可判定△CDB∽△DBA,利用對(duì)應(yīng)邊成比例,即可判斷各選項(xiàng).
解答:解:∵CD∥AB,
∴∠CDB=∠DBA,
又∵∠C=∠BDA=90°,
∴△CDB∽△DBA,
==,即==,
A、b2=ac,成立,故本選項(xiàng)正確;
B、b2=ac,不是b2=ce,故本選項(xiàng)錯(cuò)誤;
C、be=ad,不是be=ac,故本選項(xiàng)錯(cuò)誤;
D、bd=ac,不是bd=ae,故本選項(xiàng)錯(cuò)誤.
故選A.
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是判斷△CDB∽△DBA,注意掌握相似三角形的對(duì)應(yīng)邊成比例.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)E是AB邊上一點(diǎn),AE=BC,DE⊥EC,取DC的中點(diǎn)F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長(zhǎng)FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點(diǎn)E,連接CE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案