如圖,A點(diǎn)坐標(biāo)為(2,2),B點(diǎn)坐標(biāo)為(2,0).
(1)求∠AOB的度數(shù).
(2)在坐標(biāo)軸上有一點(diǎn)P,使得△PAB和△AOB全等.請(qǐng)寫出P點(diǎn)坐標(biāo).(此題只要求兩三角形全等即可,不要求點(diǎn)的位置對(duì)應(yīng))
(3)試在直線y=x﹣4上尋找一點(diǎn)Q,使得△QBO≌ABO.請(qǐng)寫出Q點(diǎn)的坐標(biāo).
解:(1)∵A點(diǎn)坐標(biāo)為(2,2),B點(diǎn)坐標(biāo)為(2,0),
∴OB=AB=2,且AB⊥OB,
∴△AOB是等腰直角三角形,
∴∠AOB=∠BAO=45°;
(2)由(1)知,△AOB是等腰直角三角形,且OB=AB=2,∠OBA=90°.
∵△PAB和△AOB全等(此題只要求兩三角形全等即可,不要求點(diǎn)的位置對(duì)應(yīng)),
∴△PAB也是等腰直角三角形.
①當(dāng)點(diǎn)P在x軸上時(shí),∠PBA=90°,如圖1所示.此時(shí)△OAB≌△PAB,則BO=BP=2,所以P(4,0);
②當(dāng)點(diǎn)P在y軸上時(shí),∠PAB=90°,如圖2所示.此時(shí)△OAB≌△PBA,則AP=AB=2,所以P(0,2);
綜上所述,滿足條件的點(diǎn)P的坐標(biāo)是:P(4,0),P(0,2);
(3)∵△QBO≌ABO,
∴QB=AB=2,∠OBQ=∠OBA=90°,
∴Q的橫坐標(biāo)是2.如圖3所示.
∵點(diǎn)Q在直線y=x﹣4上,
∴當(dāng)x=2時(shí),y=2﹣4=﹣2,
∴Q(2,﹣2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com