【題目】如圖,拋物線交x軸于,兩點,與y軸交于點C,AC,BC.M為線段OB上的一個動點,過點M作軸,交拋物線于點P,交BC于點Q.
(1)求拋物線的表達(dá)式;
(2)過點P作,垂足為點N.設(shè)M點的坐標(biāo)為,請用含m的代數(shù)式表示線段PN的長,并求出當(dāng)m為何值時PN有最大值,最大值是多少?
(3)試探究點M在運(yùn)動過程中,是否存在這樣的點Q,使得以A,C,Q為頂點的三角形是等腰三角形.若存在,請求出此時點Q的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2),當(dāng)時,PN有最大值,最大值為. (3)滿足條件的點Q有兩個,坐標(biāo)分別為:,.
【解析】
(1)將點A、B的坐標(biāo)代入解析式中求解即可;
(2)由(1)求得點C坐標(biāo),利用待定系數(shù)法求得直線BC的解析式,然后用m表示出PN,再利用二次函數(shù)的性質(zhì)即可求解;
(3)分三種情況:①AC=CQ;②AC=AQ;③CQ=AQ,分別求解即可.
解:(1)將,代入,得,解之,得.
所以,拋物線的表達(dá)式為.
(2)由,得.
將點、代入,得,解之,得.
所以,直線BC的表達(dá)式為:.
由,得,.
∴
∵,∴.
∴.
∴.
.
∵
∴當(dāng)時,PN有最大值,最大值為.
(3)存在,理由如下:由點,,知.
①當(dāng)時,過Q作軸于點E,易得,
由,得,(舍)
此時,點;
②當(dāng)時,則.
在中,由勾股定理,得.
解之,得或(舍)
此時,點;
③當(dāng)時,
由,得(舍).
綜上知所述,可知滿足條件的點Q有兩個,坐標(biāo)分別為:,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的布袋里裝有3個標(biāo)有數(shù)字1,2,4的小球,它們除數(shù)字不同外形狀大小完全相同.小昆從布袋里隨機(jī)取出一個小球,記下數(shù)字為x,然后放回布袋攪勻,再從布袋中隨機(jī)取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標(biāo)(x,y);
(1)用列表或畫樹狀圖的方法(只選其中一種),表示出點M所有可能的坐標(biāo);
(2)求點M(x,y)在函數(shù)y=的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段的端點都在網(wǎng)格線的交點上(每個小方格都是邊長為1個單位長度的正方形),按要求完成下列任務(wù).
(1)以點為旋轉(zhuǎn)中心,將線段逆時針旋轉(zhuǎn),得到線段,畫出線段;
(2)以原點為位似中心,將線段在第一象限擴(kuò)大3倍,得到線段,畫出線段;(點,的對應(yīng)點分別是,)
(3)在線段上選擇一點,使得以點,,,為頂點的四邊形是平行四邊形,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費(fèi)的投入,2014年該縣投入教育經(jīng)費(fèi)6000萬元。2016年投入教育經(jīng)費(fèi)8640萬元。假設(shè)該縣這兩年投入教育經(jīng)費(fèi)的年平均增長率相同。
(1)求這兩年該縣投入教育經(jīng)費(fèi)的年平均增長率;
(2)若該縣教育經(jīng)費(fèi)的投入還將保持相同的年平均增長率,請你預(yù)算2017年該縣投入教育經(jīng)費(fèi)多少萬元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歐拉(Euler,1707年~1783年)為世界著名的數(shù)學(xué)家、自然科學(xué)家,他在數(shù)學(xué)、物理、建筑、航海等領(lǐng)域都做出了杰出的貢獻(xiàn).他對多面體做過研究,發(fā)現(xiàn)多面體的頂點數(shù)(Vertex)、棱數(shù)E(Edge)、面數(shù)F(Flat surface)之間存在一定的數(shù)量關(guān)系,給出了著名的歐拉公式.
(1)觀察下列多面體,并把下表補(bǔ)充完整:
名稱 | 三棱錐 | 三棱柱 | 正方體 | 正八面體 |
圖形 | ||||
頂點數(shù)V | 4 | 6 | 8 | |
棱數(shù)E | 6 | 12 | ||
面數(shù)F | 4 | 5 | 8 |
(2)分析表中的數(shù)據(jù),你能發(fā)現(xiàn)V、E、F之間有什么關(guān)系嗎?請寫出關(guān)系式:____________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山地自行車越來越受年輕人的喜愛.某車行經(jīng)營的A型山地自行車去年銷售總額為30萬元,今年每輛車售價比去年降低了200元.若賣出的數(shù)量相同,銷售總額將比去年減少10%,
(1)今年A型車每輛售價多少元?
(2)該車行計劃再進(jìn)一批A型車和新款B型車共60輛,要使這批車獲利不少于4萬元,A型車至多進(jìn)多少輛?
A、B兩種型號車的進(jìn)貨和銷售價格如表:
A型車 | B型車 | |
進(jìn)貨價格(元) | 1200 | 1400 |
銷售價格(元) | 今年的銷售價格 | 2200 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年植樹節(jié)期間,某景觀園林公司購進(jìn)一批成捆的,兩種樹苗,每捆種樹苗比每捆種樹苗多10棵,每捆種樹苗和每捆種樹苗的價格分別是630元和600元,而每棵種樹苗和每棵種樹苗的價格分別是這一批樹苗平均每棵價格的0.9倍和1.2倍.
(1)求這一批樹苗平均每棵的價格是多少元?
(2)如果購進(jìn)的這批樹苗共5500棵,種樹苗至多購進(jìn)3500棵,為了使購進(jìn)的這批樹苗的費(fèi)用最低,應(yīng)購進(jìn)種樹苗和種樹苗各多少棵?并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校開展“雙劇進(jìn)課堂”的活動,該校童威隨機(jī)抽取部分學(xué)生,按四個類別:表示“很喜歡”,表示“喜歡”,表示“一般”,表示“不喜歡”,調(diào)查他們對漢劇的喜愛情況,將結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息,解決下列問題:
(1)這次共抽取_________名學(xué)生進(jìn)行統(tǒng)計調(diào)查,扇形統(tǒng)計圖中,類所對應(yīng)的扇形圓心角的大小為__________
(2)將條形統(tǒng)計圖補(bǔ)充完整
(3)該校共有1500名學(xué)生,估計該校表示“喜歡”的類的學(xué)生大約有多少人?
各類學(xué)生人數(shù)條形統(tǒng)計圖各類學(xué)生人數(shù)扇形統(tǒng)計圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與軸相交于點A,與軸相交于點B.點C在軸上運(yùn)動,作CD⊥AB,垂足為D.點E為軸上一動點,點E關(guān)于CD中點的中心對稱點為點F.設(shè)點C的坐標(biāo)為(0,n).
(1)用n表示線段CD的長;
(2)當(dāng)OC=1時,若點F落在直線y軸上,求此時點E的坐標(biāo);
(3)在點E的運(yùn)動過程中,若存在唯一的位置,使得四邊形CEDF為矩形,請直接寫出點C的坐標(biāo)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com