【題目】如圖,在平行四邊形ABCD中,點A1,A2,A3,A4和C1,C2,C3,C4分別是ABCD的五等分點,點B1,B2和D1,D2分別是BC和DA的三等分點,已知四邊形A4B2C4D2的面積為2,則平行四邊形ABCD的面積為( )

A. 4 B. C. D. 30

【答案】C

【解析】設(shè)平行四邊形ABCD的面積是S,設(shè)AB=5a,BC=3bAB邊上的高是3x,BC邊上的高是5y.則S=5a3x=3b5y.即ax=by= ,

AA4D2B2CC4全等,B2C= BC=bB2C邊上的高是 ,

AA4D2B2CC4的面積是2by= ,

同理D2C4DA4BB2的面積是,

則四邊形A4B2C4D2的面積是 S- ,即=2,

∴S= ;

故選C。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級全體同學(xué)參加了某項捐款活動,隨機抽查了部分同學(xué)捐款的情況統(tǒng)計如圖所示.

1)本次共抽查學(xué)生      人,并將條形圖補充完整;

2)捐款金額的眾數(shù)是     平均數(shù)是      中位數(shù)為      

3)在八年級600名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點坐標分別為A(-2,1),B(-1,4),C(-3,2).

(1)以原點O為位似中心,相似比為12,在y軸的左側(cè),畫出ABC放大后的圖形A1B1C1,并直接寫出C1點的坐標;

(2)若點D(a,b)在線段AB上,請直接寫出經(jīng)過(1)的變化后點D的對應(yīng)點D1的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為2的正方形ABCD中,P是對角線AC上的一個動點(點P與A、C不重合),連接BP,將BP繞點B順時針旋轉(zhuǎn)90°到BQ,連接QP,QP與BC交于點E,QP延長線與AD(或AD延長線)交于點F.

(1)連接CQ,證明:CQ=AP;

(2)設(shè)AP=x,CE=y,試寫出y關(guān)于x的函數(shù)關(guān)系式,并求當x為何值時,CE=BC;

(3)猜想PF與EQ的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

A

B

價格(萬元/臺)

a

b

處理污水量(噸/月)

240

180

1)求a,b的值;

2)治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認為該公司有哪幾種購買方案;

3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

1個等式:

2個等式:

3等式:

4個等式:

請解答下列問題:

(1)按以上規(guī)律寫出第5個等式:a5=   =   

(2)用含n的式子表示第n個等式:an=   =   (n為正整數(shù)).

(3)求a1+a2+a3+a4+…+a2018的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FCADE

1)求證:AFE≌△CDF;

2)若AB=4,BC=8,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,要說明ABDACD,還需從下列條件中選一個,錯誤的選法是(

A. ADB=∠ADCB. B=∠CC. DBDCD. ABAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過DDOAB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD

1)求證:DOB∽△ACB

2)若AD平分∠CAB,求線段BD的長;

3)當AB′D為等腰三角形時,求線段BD的長.

查看答案和解析>>

同步練習(xí)冊答案