【題目】有一個(gè)面積為1的正方形,經(jīng)過一次“生長(zhǎng)”后,在它的左右肩上生出兩個(gè)小正方形(如圖1),其中,三個(gè)正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長(zhǎng)”后,生出了4個(gè)正方形(如圖2),如果按此規(guī)律繼續(xù)“生長(zhǎng)”下去,它將變得“枝繁葉茂”.在“生長(zhǎng)”了2 017次后形成的圖形中所有正方形的面積和是____

1 2

【答案】2018

【解析】根據(jù)勾股定理和正方形的面積公式,知“生長(zhǎng)”1次后,以直角三角形兩條直角邊為邊長(zhǎng)的正方形的面積和等于以斜邊為邊長(zhǎng)的正方形的面積,即所有正方形的面積和是2×1=2;“生長(zhǎng)”2次后,所有的正方形的面積和是3×1=3,推而廣之即可求出“生長(zhǎng)”2017次后形成圖形中所有正方形的面積之和.

設(shè)直角三角形的是三條邊分別是a,b,c.

根據(jù)勾股定理,得a2+b2=c2,

由圖1可知,“生長(zhǎng)”1次后,以直角三角形兩條直角邊為邊長(zhǎng)的正方形的面積和等于以斜邊為邊長(zhǎng)的正方形的面積,即所有正方形的面積和是2×1=2;

由圖2可知,“生長(zhǎng)”2次后,所有的正方形的面積和是3×1=3;

推而廣之,“生長(zhǎng)”了2017次后形成的圖形中所有的正方形的面積和是2018×1=2018.

故答案為:2018

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠AOC=100°,∠BOC=30°,OM、ON分別是∠AOC和∠BOC的平分線,求∠MON的度數(shù).(自己畫圖,并寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀材料)小白同學(xué)在研究有理數(shù)分類時(shí),認(rèn)為所有的無限循環(huán)小數(shù)都可以化為分?jǐn)?shù),例如,怎樣化成分?jǐn)?shù)?

小白的思路是這樣的:

設(shè)=x,則10×=10x=10x,=10x﹣x,3=9x,x=

(解決問題)請(qǐng)你按照小白的思路解決下列問題:

(1)化成分?jǐn)?shù);

(2)化成分?jǐn)?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要將一塊長(zhǎng)為a米,寬為b米的長(zhǎng)方形空地設(shè)計(jì)成花園,現(xiàn)有如下兩種方案供選擇.

方案一:如圖1,在空地上橫、豎各鋪一條寬為4米的石子路,其余空地種植花草.

方案二:如圖2,在長(zhǎng)方形空地中留一個(gè)四分之一圓和一個(gè)半圓區(qū)域種植花草,其余空地鋪筑成石子路.

(1) 分別表示這兩種方案中石子路(圖中陰影部分)的面積(若結(jié)果中含有π,則保留)

(2) a=30,b=20,該校希望多種植物美化校園,請(qǐng)通過計(jì)算選擇其中一種方案(π3.14).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2

1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長(zhǎng)度,求點(diǎn)B所對(duì)應(yīng)的數(shù);

2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.

3)在2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過多長(zhǎng)時(shí)間AB兩點(diǎn)相距4個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對(duì)稱軸為x=﹣1.給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正確結(jié)論是(
A.②④
B.①④
C.②③
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是一張紙片,∠C=90°,AC=6,BC=8,現(xiàn)將其折疊.使點(diǎn)B與點(diǎn)A重合,折痕為DE,則DE的長(zhǎng)為(

A. 1.75 B. 3 C. 3.75 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某網(wǎng)店的“翻牌抽獎(jiǎng)”活動(dòng),如圖,4張牌分別對(duì)應(yīng)價(jià)值5,10,15,20(單位:元)的4件獎(jiǎng)品.
(1)如果隨機(jī)翻1張牌,那么抽中20元獎(jiǎng)品的概率為
(2)如果隨機(jī)翻2張牌,且第一次翻過的牌不再參加下次翻牌,請(qǐng)用列表或畫樹狀圖的方法求出所獲獎(jiǎng)品總值不低于30元的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

我們知道:一條線段有兩個(gè)端點(diǎn),線段和線段表示同一條線段. 若在直線上取了三個(gè)不同的點(diǎn),則以它們?yōu)槎它c(diǎn)的線段共有 ;若取了四個(gè)不同的點(diǎn),則共有線段 ;…;依此類推,取了個(gè)不同的點(diǎn),共有線段條.(用含的代數(shù)式表示)

類比探究:

以一個(gè)銳角的頂點(diǎn)為端點(diǎn)向這個(gè)角的內(nèi)部引射線.

(1)若引出兩條射線,則所得圖形中共有 個(gè)銳角;

(2)若引出條射線,則所得圖形中共有 個(gè)銳角.(用含的代數(shù)式表示)

拓展應(yīng)用:

一條鐵路上共有8個(gè)火車站,若一列火車往返過程中必須?棵總(gè)車站,則鐵路局需為這條線路準(zhǔn)備多少種車票?

查看答案和解析>>

同步練習(xí)冊(cè)答案