(2012•和平區(qū)模擬)如圖,拋物線y=x2-2x+a(a<0)與y軸相交于點A,頂點為M直線y=
1
2
x-a
分別與x軸、y軸相交于B、C兩點,并且與直線AM相交于點N.
(1)填空:試用含a的代數(shù)式分別表示點M與N的坐標,則M
(1,a-1)
(1,a-1)
,N
4
3
a,-
1
3
a)
4
3
a,-
1
3
a)
;
(2)若點N關(guān)于y軸的對稱點N′恰好落在拋物線上,求此時拋物線的解析式;
(3)在拋物線y=x2-2x+a(a<0)上是否存在點P.使得以P、A、C、N為頂點的四邊形是平行四邊形?若存在,求出P點的坐標;若不存在,試說明理由.
分析:(1)已知了拋物線的解析式,不難用公式法求出M的坐標為(1,a-1).由于拋物線過A點,因此A的坐標是(0,a).根據(jù)A,M的坐標,用待定系數(shù)法可得出直線AM的解析式為y=-x+a.直線AM和y=
1
2
x-a聯(lián)立方程組即可求出N的坐標為(
4
3
a,-
1
3
a).
(2)根據(jù)折疊的性質(zhì)不難得出N與N′正好關(guān)于y軸對稱,因此N′的坐標為(-
4
3
a,-
1
3
a).由于N′在拋物線上,因此將N′的坐標代入拋物線的解析式中即可得出a的值.
(3)本題可分兩種情況進行討論:
①當P在y軸左側(cè)時,如果使以P,N,A,C為頂點的四邊形為平行四邊形,那么P需要滿足的條件是PN平行且相等于AC,也就是說,如果N點向上平移AC個單位即-2a后得到的點就是P點.然后將此時P的坐標代入拋物線中,如果沒有解說明不存在這樣的點P,如果能求出a的值,那么即可求出此時P的坐標.
②當P在y軸右側(cè)時,P需要滿足的條件是PN與AC應互相平分(平行四邊形的對角線互相平分),那么NP必過原點,且關(guān)于原點對稱.那么可得出此時P的坐標,然后代入拋物線的解析式中按①的方法求解即可.
解答:解:(1)∵y=x2-2x+a=(x-1)2-1+a,
∴頂點M的坐標為;(1,a-1),
由于拋物線過A點,因此A的坐標是(0,a).
設直線AM的解析式為y=kx+b,
b=a
k+b=a-1
,
解得:
k=-1
b=a

則直線AM的解析式為:y=-x+a.
直線AM和y=
1
2
x-a聯(lián)立方程組,
y=-x+a
y=
1
2
x-a
,
解得:
x=
4
3
a
y=-
1
3
a

即可求出N的坐標為(
4
3
a,-
1
3
a).

(2)∵由題意得點N與點N′關(guān)于y軸對稱,
∴N′(-
4
3
a,-
1
3
a).
將N′的坐標代入y=x2-2x+a得:
-
1
3
a=
16
9
a2+
8
3
a+a,
∴a1=0(不合題意,舍去),a2=-
9
4

∴此時拋物線的解析式為:y=x2-2x-
9
4
;

(3)存在,理由如下:
當點P在y軸的左側(cè)時,若四邊形ACPN是平行四邊形,則PN平行且等于AC,
由A(0,a),C(0,-a),得AC=-2a,
則把N向上平移-2a個單位得到P,坐標為(
4
3
a,-
7
3
a),代入拋物線的解析式,
得:-
7
3
a=
16
9
a2-
8
3
a+a,
解得a1=0(不舍題意,舍去),a2=-
3
8
,
則P(-
1
2
,
7
8
);
當點P在y軸的右側(cè)時,若四邊形APCN是平行四邊形,則AC與PN互相平分,
由A(0,a),C(0,-a),則OA=OC,OP=ON.
則P與N關(guān)于原點對稱,
則P(-
4
3
a,
1
3
a);
將P點坐標代入拋物線解析式得:
1
3
a=
16
9
a2+
8
3
a+a,
解得a1=0(不合題意,舍去),a2=-
15
8
,
則P(
5
2
,-
5
8
).
故存在這樣的點P1(-
1
2
,
7
8
)或P2
5
2
,-
5
8
),能使得以P,A,C,N為頂點的四邊形是平行四邊形.
故答案為:(1,a-1),(
4
3
a,-
1
3
a).
點評:本題主要考查了待定系數(shù)法求函數(shù)解析式、平行四邊形的性質(zhì)等重要知識點,綜合性強,能力要求較高.考查學生分類討論,數(shù)形結(jié)合的數(shù)學思想方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)一模)如圖分別表示甲、乙、丙三人由A地到B地的路線.
甲的路線為:A→C→B
乙的路線為:A→D→E→F→B,其中E為AB的中點
丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB
若符號「→」表示「直線前進」,判斷三人行進路線長度的大小關(guān)系為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)一模)下列圖形:

其中,可以看作是中心對稱圖形的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)一模)解不等式組
1
2
(x+4)>2
2x+6≥3x+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)二模)將450億元用科學記數(shù)法表示為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)二模)把一個骰子兩次,觀察向上一面的點數(shù),它們的點數(shù)都是4的概率是( 。

查看答案和解析>>

同步練習冊答案