【題目】如圖,大樓底右側有一障礙物,在障礙物的旁邊有一棟小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為,測得大樓頂端A的仰角為B,CE在同一水平直線上已知,,則障礙物B,C兩點間的距離為______結果保留根號

【答案】

【解析】

過點DDFAB于點F,過點CCHDF于點H,則DE=BF=CH=10m,根據(jù)直角三角形的性質得出DF的長.在RtCDE中,利用銳角三角函數(shù)的定義得出CE的長,根據(jù)BC=BECE即可得出結論.

過點DDFAB于點F,過點CCHDF于點H

DE=BF=CH=10m.在RtADF中,AF=ABBF=30m,∠ADF=45°,∴DF=AF=30m

RtCDE中,DE=10m,∠DCE=30°,∴CE10m),∴BC=BECE=3010m

答:障礙物B,C兩點間的距離為(3010m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2,3,根據(jù)圖中數(shù)據(jù)完成填空,再按要求答題:sin2A1sin2B1=____;sin2A2sin2B2=____sin2A3sin2B3=____.

(1)觀察上述等式,猜想:在RtABC中,∠C=90°,都有sin2Asin2B=____;

(2)如圖4,在RtABC中,∠C=90°,∠A,∠B,∠C的對邊分別是a,b,c,利用三角函數(shù)的定義和勾股定理證明你的猜想;

(3)已知∠A+∠B=90°,且sinA=,求sinB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,□ABCD的對角線交于點O,點E在邊BC的延長線上,且OE=OB,連接DE

(1)求證:BDE是直角三角形;

(2)如果OECD,試判斷BDEDCE是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A,B兩點,且點A的橫坐標和點B的縱坐標都是﹣2,

求:(1)一次函數(shù)的解析式;

(2)△AOB的面積;

(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經信息解答下列問題:

1)這次知識競賽共有多少名學生?

2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;

3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是反比例函數(shù)圖象上的一動點,軸于點A,在直線上截取B在第一象限,點C的坐標為,連接AC、BC、OC

填空:______,______;

求證:;

隨著點P的運動,的大小是否會發(fā)生變化?若變化,請說明理由,若不變,則求出它的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑AB20,弦CDAB,動點M在半徑OD上,射線BM與弦CD相交于點E(點E與點C、D不重合),設OMm

1)求DE的長(用含m的代數(shù)式表示);

2)令弦CD所對的圓心角為α,且sin

①若DEM的面積為S,求S關于m的函數(shù)關系式,并求出m的取值范圍;

②若動點NCD上,且CNOM,射線BM與射線ON相交于點F,當∠OMF90° 時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y=﹣x+x軸交于點A,與y=﹣x相交于點B,點C是線段OB上一動點,連接AC,在AC上方取點D,使得cosCAD,且,連接OD,當點C從點O運動到點B時,線段OD掃過的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長.

查看答案和解析>>

同步練習冊答案