已知:如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于C點.
(1)求拋物線的解析式及其頂點Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最。堅趫D中畫出點P的位置,并求點P的坐標(biāo);
(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.
①有一個同學(xué)說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當(dāng)點D運動至點Q時,折線D-E-O的長度最長”.這個同學(xué)的說法正確嗎?請說明理由.
②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標(biāo);若不能,請簡要說明理由;

解:(1)將A(-1,0)、B(5,0)分別代入y=-x2+bx+c中,
,得∴y=-x2+4x+5.
∵y=-x2+4x+5=-(x-2)2+9,∴Q(2,9).
(2)如圖1,連接BC,交對稱軸于點P,連接AP、AC.
∵AC長為定值,∴要使△PAC的周長最小,只需PA+PC最。
∵點A關(guān)于對稱軸x=1的對稱點是點B(5,0),拋物線y=-x2+4x+5與y軸交點C的坐標(biāo)為(0,5).
∴由幾何知識可知,PA+PC=PB+PC為最。
設(shè)直線BC的解析式為y=kx+5,將B(5,0)代入5k+5=0,得k=-1,
∴y=-x+5,∴當(dāng)x=2時,y=3,∴點P的坐標(biāo)為(2,3).
(3)①這個同學(xué)的說法不正確.
∵設(shè)D(t,-t2+4t+5),設(shè)折線D-E-O的長度為L,則
∵a<0,∴當(dāng)時,
而當(dāng)點D與Q重合時,,
∴該該同學(xué)的說法不正確.
②四邊形DCEB不能為平行四邊形.
如圖2,若四邊形DCEB為平行四邊形,則EF=DF,CF=BF.
∵DE∥y軸,∴,即OE=BE=2.5.
當(dāng)xF=2.5時,yF=-2.5+5=2.5,即EF=2.5;
當(dāng)xD=2.5時,,即DE=8.75.
∴DF=DE-EF=8.75-2.5=6.25>2.5.即DF>EF,這與EF=DF相矛盾,
∴四邊形DCEB不能為平行四邊形.
分析:(1)將A(-1,0)、B(5,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后即可確定其頂點坐標(biāo);
(2)連接BC,交對稱軸于點P,連接AP、AC.求得C點的坐標(biāo)后然后確定直線BC的解析式,最后求得其與x=1與直線BC的交點坐標(biāo)即為點P的坐標(biāo);
(3)①設(shè)D(t,-t2+4t+5),設(shè)折線D-E-O的長度為L,求得L的最大值后與當(dāng)點D與Q重合時相比較即可得到答案;
②假設(shè)四邊形DCEB為平行四邊形,則可得到EF=DF,CF=BF.然后根據(jù)DE∥y軸求得DF,得到DF>EF,這與EF=DF相矛盾,從而否定是平行四邊形.
點評:本題考查了二次函數(shù)的綜合知識,其中涉及到的知識點有拋物線的頂點的確定方法及有關(guān)的幾何知識.在求有關(guān)動點問題時要注意分析題意分情況討論結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,拋物線y=ax2+bx過點A(6,3),且對稱軸為直線x=
52
.點B為直線OA下方的拋物線上一動點,點B的橫坐標(biāo)為m.
(1)求該拋物線的解析式;
(2)若△OAB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)如圖2,過點B作直線BC∥y軸,交線段OA于點C,在拋物線的對稱軸上是否存在點D,使△BCD是以D為直角頂點的等腰直角三角形?若存在,求出所有符合條件的點B的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大安市模擬)已知:如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于C點.
(1)求拋物線的解析式及其頂點Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最。堅趫D中畫出點P的位置,并求點P的坐標(biāo);
(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.
①有一個同學(xué)說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當(dāng)點D運動至點Q時,折線D-E-O的長度最長”.這個同學(xué)的說法正確嗎?請說明理由.
②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標(biāo);若不能,請簡要說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄂州)已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x-2經(jīng)過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當(dāng)點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設(shè)s=
ED+OPED•OP
,當(dāng)t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,拋物線C1y=
1
3
(x-m)2+n
(m>0)的頂點為A,與y軸相交于點B,拋物線C2y=-
1
3
(x+m)2-n
的頂點為C,并與y軸相交于點D,其中點A、B、C、D中的任意三點都不在同一條直線
(1)判斷四邊形ABCD的形狀,并說明理由;
(2)如圖2,若拋物線y=
1
3
(x-m)2+n
 (m>0)的頂點A落在x軸上時,四邊形ABCD恰好是正方形,請你確定m,n的值;
(3)是否存在m,n的值,使四邊形ABCD是鄰邊之比為1:
3
 的矩形?若存在,請求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶安區(qū)二模)已知:如圖1,拋物線經(jīng)過點O、A、B三點,四邊形OABC是直角梯形,其中點A在x軸上,點C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)若D為OA的中點,動點P自A點出發(fā)沿A→B→C→O的路線移動,速度為每秒1個單位,移動時間記為t秒.幾秒鐘后線段PD將梯形OABC的面積分成1﹕3兩部分?并求出此時P點的坐標(biāo);
(3)如圖2,作△OBC的外接圓O′,點Q是拋物線上點A、B之間的動點,連接OQ交⊙O′于點M,交AB于點N.當(dāng)∠BOQ=45°時,求線段MN的長.

查看答案和解析>>

同步練習(xí)冊答案