【題目】如圖,在△ABC中,AB=AC,BD=BC,等邊△BEF的頂點F在BC上,邊EF交AD于點P,若BE=10,BC=14,則PE的長為( )
A.1B.2C.3D.4
【答案】D
【解析】
根據(jù)等腰三角形的性質(zhì),由AB=AC,BD=BC,得到AD⊥BC,再根據(jù)等邊三角形的性質(zhì)得∠BFE=60°,BF=BE=EF=10,則可計算出DF=BF﹣BD=10﹣7=3,然后在Rt△PDF中,利用含30度的直角三角形的三邊關(guān)系得到PF=2DF=6,所以PE=EF﹣PF=10﹣6=4.
∵AB=AC,BD=BC=7,
∴AD⊥BC,
∵△BEF為等邊三角形,
∴∠BFE=60°,BF=BE=EF=10,
∴DF=BF﹣BD=10﹣7=3,
在Rt△PDF中,∵∠PFD=60°,
∴∠DPF=30°,
∴PF=2DF=6,
∴PE=EF﹣PF=10﹣6=4.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點P是線段AB上的動點(不與A、B重合),過點P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點C.
(1)求a、b的值
(2)求線段PC長的最大值;
(3)若△PAC為直角三角形,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy中,直線ykxb與 x軸相交于點A,與反比例函數(shù)在第一象限內(nèi)的圖像相交于點 A(1,8)、B(m,2).
(1)求該反比例函數(shù)和直線y kxb的表達式;
(2)求證:ΔOBC為直角三角形;
(3)設(shè)∠ACO=α,點Q為反比例函數(shù)在第一象限內(nèi)的圖像上一動點,且滿足90°-α<∠QOC<α,求點Q的橫坐標(biāo)q的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018長春國際馬拉松賽于2018年5月27日在長春市舉行,其中10公里跑起點是長春體育中心,終點是衛(wèi)星廣場.比賽當(dāng)天賽道上距離起點5km處設(shè)置一個飲料站,距離起點7.5km處設(shè)置一個食品補給站.小明報名參加了10公里跑項目.為了更好的完成比賽,小明在比賽前進行了一次模擬跑,從起點出發(fā),沿賽道跑向終點,小明勻速跑完前半程后,將速度提高了,繼續(xù)勻速跑完后半程.小明與終點之間的路程與時間之間的函數(shù)圖象如圖所示,根據(jù)圖中信息,完成以下問題.(1公里=1千米)
(1)小明從起點勻速跑到飲料站的速度為_______,小明跑完全程所用時間為________;
(2)求小明從飲料站跑到終點的過程中與之間的函數(shù)關(guān)系式;
(3)求小明從起點跑到食品補給站所用時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(c>0)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=OC=3,頂點為M.
(1)求二次函數(shù)的解析式;
(2)點P為線段BM上的一個動點,過點P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點N,使△NMC為等腰三角形?如果存在,求出點N的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.
(1)求證:△ABF∽△CEB;
(2)若△DEF的面積為2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與計算:請閱讀以下材料,并完成相應(yīng)的任務(wù).
斐波那契(約1170﹣1250)是意大利數(shù)學(xué)家,他研究了一列數(shù),這列數(shù)非常奇妙,被稱為斐波那契數(shù)列(按照一定順序排列著的一列數(shù)稱為數(shù)列).后來人們在研究它的過程中,發(fā)現(xiàn)了許多意想不到的結(jié)果,在實際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的瓣數(shù)恰是斐波那契數(shù)列中的數(shù).斐波那契數(shù)列還有很多有趣的性質(zhì),在實際生活中也有廣泛的應(yīng)用.斐波那契數(shù)列中的第n個數(shù)可以用表示(其中,n≥1).這是用無理數(shù)表示有理數(shù)的一個范例.
任務(wù):請根據(jù)以上材料,通過計算求出斐波那契數(shù)列中的第1個數(shù)和第2個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形 ABCD 中,AD∥BC,∠ABC=90°,AB=7,AD=3, BC=4.點 P 為 AB 邊上一動點,若△PAD 與△PBC 是相似三角形,則滿足條件的點 P 的個數(shù)是( )
A. 1個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com