觀察下列各式及其驗(yàn)證過(guò)程:2
2
3
=
2+
2
3
;,3
3
8
=
3+
3
8

驗(yàn)證:2
2
3
=
23
3
=
23-2+2
3
=
2(22-1)+2
3
=
2(22-1)+2
22-1
=
2+
2
22-1
=
2+
2
3
;3
3
8
=
33
8
=
33-3+3
8
=
3(32-1)+3
8
=
3(32-1)+3
32-1
=
3+
3
32-1
=
3+
3
8

(1)按照上面結(jié)論猜想4
4
15
的結(jié)果,并寫出驗(yàn)證過(guò)程;
(2)根據(jù)對(duì)上述各式規(guī)律,寫出用n(n為正整數(shù),且n≥2)表示的等式并給出證明.
分析:(1)根據(jù)已知中二次根式的化簡(jiǎn)即可得出答案.
(2)利用(1)中計(jì)算結(jié)果,即可得出二次根式的變化規(guī)律,進(jìn)而得出答案即可.
解答:解:(1)4
4
15
=
4+
4
15

4
4
15

=
43
15
,
=
43-4+4
15

=
4(42-1)+4
15
,
=
4(42-1)+4
42
,
=
4+
4
42-1
=
4+
4
15
;

(2)n
n
n2-1

=
n+
n
n2-1
n+
n
n2-1
,
=
n2-n+n
n2-1

=
n3
n2-1
,
=n
n
n2-1
點(diǎn)評(píng):此題主要考查了數(shù)字變化規(guī)律,根據(jù)已知得出根式內(nèi)外變化規(guī)律是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列各式及其驗(yàn)證過(guò)程:
驗(yàn)證:2
2
3
=
2+
2
3
;
驗(yàn)證:2
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3
;
驗(yàn)證:3
3
8
=
3+
3
8
;
驗(yàn)證:3
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

(1)按照上述兩個(gè)等式及其驗(yàn)證過(guò)程的基本思路,猜想4
4
15
的變形結(jié)果并進(jìn)行驗(yàn)證;
(2)針對(duì)上述各式反映的規(guī)律,寫出用n(n為任意自然數(shù),且n≥2)表示的等式,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列各式及其驗(yàn)證過(guò)程
2
2
3
=
2+
2
3

驗(yàn)證:2
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3
;
3
3
8
=
3+
3
8

驗(yàn)證:3
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

按照上述兩個(gè)等式及其驗(yàn)證過(guò)程的基本思路,猜想4
4
15
的變形結(jié)果并進(jìn)行驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列各式及其驗(yàn)證過(guò)程:
2+
2
3
=2
2
3
,驗(yàn)證:
2+
2
3
=
8
3
=
22×2
3
=2
2
3
3+
3
8
=3
3
8
,驗(yàn)證:
3+
3
8
=
27
8
=
32×3
8
=3
3
8

(1)按照上述兩個(gè)等式及其驗(yàn)證過(guò)程,猜想
4+
4
15
的變形結(jié)果并進(jìn)行驗(yàn)證;
(2)針對(duì)上述各式反映的規(guī)律,直接寫出用a(a≥2的整數(shù))表示的等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列各式及其驗(yàn)證過(guò)程
①2
2
3
=
2+
2
3
;驗(yàn)證:2
2
3
=
23
3
=
2(22-1)+2
22-1
=
2+
2
3

②3
3
8
=
3+
3
8
;驗(yàn)證:3
3
8
=
33
8
=
3(32-1)+3
32-1
=
3+
3
8

(1)參照上述等式及其驗(yàn)證過(guò)程的基本思路,猜想:5
5
24
=
 
;
(2)針對(duì)上述各式所反映的一般規(guī)律,請(qǐng)你猜想出用n(n為自然數(shù),且n≥2)表示的等式,并給出驗(yàn)證.

查看答案和解析>>

同步練習(xí)冊(cè)答案