【題目】某賓館客房部有60個房間供游客居住,當(dāng)每個房間的定價為每天200元時,房間可以住滿.當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑.對有游客入住的房間,賓館需對每個房間每天支出20元的各種費用. 設(shè)每個房間每天的定價增加x元.求:
(1)房間每天的入住量y(間)關(guān)于x(元)的函數(shù)關(guān)系式;
(2)該賓館每天的房間收費p(元)關(guān)于x(元)的函數(shù)關(guān)系式;
(3)該賓館客房部每天的利潤w(元)關(guān)于x(元)的函數(shù)關(guān)系式;當(dāng)每個房間的定價為每天多少元時,w有最大值?最大值是多少?
【答案】
(1)解:由題意得:
y=60﹣
(2)解:p=(200+x)(60﹣ )=﹣ +40x+12000
(3)解:w=(200+x)(60﹣ )﹣20×(60﹣ )
=﹣ +42x+10800
=﹣ (x﹣210)2+15210
當(dāng)x=210時,w有最大值.
此時,x+200=410,就是說,當(dāng)每個房間的定價為每天410元時,w有最大值,且最大值是15210元.
【解析】(1)根據(jù)題意可得房間每天的入住量=60個房間﹣每個房間每天的定價增加的錢數(shù)÷10;(2)已知每天定價增加為x元,則每天要(200+x)元.則賓館每天的房間收費=每天的實際定價×房間每天的入住量;(3)支出費用為20×(60﹣ ),則利潤w=(200+x)(60﹣ )﹣20×(60﹣ ),利用配方法化簡可求最大值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c過點(﹣1,0),且對稱軸為直線x=1,有下列結(jié)論: ①abc<0;②10a+3b+c>0;③拋物線經(jīng)過點(4,y1)與點(﹣3,y2),則y1>y2;④無論a,b,c取何值,拋物線都經(jīng)過同一個點(﹣ ,0);⑤am2+bm+a≥0,其中所有正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)經(jīng)公司以30元/千克的價格收購一批農(nóng)產(chǎn)品進行銷售,為了得到日銷售量p(千克)與銷售價格x(元/千克)之間的關(guān)系,經(jīng)過市場調(diào)查獲得部分數(shù)據(jù)如下表:
銷售價格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日銷售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)請你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定p與x之間的函數(shù)表達式;
(2)農(nóng)經(jīng)公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷售價格,才能使日銷售利潤最大?
(3)若農(nóng)經(jīng)公司每銷售1千克這種農(nóng)產(chǎn)品需支出a元(a>0)的相關(guān)費用,當(dāng)40≤x≤45時,農(nóng)經(jīng)公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷售利潤﹣日支出費用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,橢圓 的右頂點和上頂點分別為點A,B,M是線段AB的中點,且 ..
(1)求橢圓的離心率;
(2)若a=2,四邊形ABCD內(nèi)接于橢圓,AB∥CD,記直線AD,BC的斜率分別為k1 , k2 , 求證:k1k2為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面積為S1 , S2 , S3三部分,則S1:S2:S3=( )
A.1:2:3
B.1:4:9
C.1:3:5
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為10cm,弦AB∥CD,AB=12cm,CD=16cm,則AB和CD的距離為( )
A.2cm
B.14cm
C.2cm或14cm
D.10cm或20cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.“任意畫一個三角形,其內(nèi)角和是360°”是隨機事件
B.“明天的降水概率為80%”,意味著明天降雨的可能性較大
C.“某彩票中獎概率是1%”,表示買100張這種彩票一定會中獎
D.曉芳拋一枚硬幣10次,有7次正面朝上,當(dāng)她拋第11次時,正面向上的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF結(jié)果精確到米)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com