【題目】如圖①,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=40°,求∠DOE的度數(shù);
(2)如圖①,若∠AOC=α,直接寫(xiě)出∠DOE的度數(shù)(用含α的代數(shù)式表示)
(3)將圖①中的∠COD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,OE平分∠BOC.
①探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫(xiě)出你的結(jié)論,并說(shuō)明理由;
②在∠AOC的內(nèi)部有一條射線OF,且∠AOC﹣3∠AOF=2∠BOE,試確定∠AOF與∠DOE的度數(shù)之間的關(guān)系,說(shuō)明理由.
【答案】(1)20°;(2)∠DOE=;(3)①∠DOE=∠AOC,理由見(jiàn)解析;②4∠EOD﹣3∠AOF=180°,理由見(jiàn)解析.
【解析】
首先求得∠COB的度數(shù),然后根據(jù)角平分線的定義求得∠COE的度數(shù),再根據(jù)∠DOE=∠COD-∠COE即可求解;
解法與(1)相同,把①中的60°改成α即可;
①把∠AOC的度數(shù)作為已知量,求得∠BOC的度數(shù),然后根據(jù)角的平分線的定義求得∠COE的度數(shù),再根據(jù)∠DOE=∠COD-∠COE求得∠DOE,即可解決;
②由∠AOC﹣3∠AOF=2∠BOE, OE平分∠BOC,∠AOC和∠DOE的關(guān)系,可以建立各個(gè)角之間的關(guān)系,從而可以得到∠AOF與∠DOE的度數(shù)之間的關(guān)系.
(1)∵∠AOC=40°
∴∠COB=180°﹣∠AOC=180°﹣40°=140°
∵OE平分∠COB
∴∠COE=∠COB=70°,
又∵∠COD=90°
∴∠EOD=∠COD﹣∠COE=20°
(2)∠DOE=,
(3)①∠DOE=∠AOC,理由如下:
∵OE平分∠COB
∴∠COE=∠COB
又∵∠COD=90°
∴∠EOD=∠COD﹣∠COE=90°﹣∠COB,
∵∠COB+∠AOC=180°
∴∠COB=180°﹣∠AOC
∴∠EOD=90°﹣(180°﹣∠AOC)=∠AOC
②4∠EOD﹣3∠AOF=180°,理由如下:
∵OE平分∠COB
∴∠EOB=∠COE
∴∠AOC﹣2∠BOE=∠AOC﹣2∠COE
=∠AOC﹣2(90°﹣∠EOD)
=∠AOC+2∠EOD﹣180°
又∵∠DOE=∠AOC
∴∠AOC﹣2∠BOE=4∠EOD﹣180°
∵∠AOC﹣3∠AOF=2∠BOE
∴4∠EOD﹣3∠AOF=180°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形紙片,將長(zhǎng)方形紙片沿圖中虛線剪成四個(gè)形狀和大小完全相同的小長(zhǎng)方形,然后拼成圖②所示的一個(gè)大正方形.
(1)用兩種不同的方法表示圖②中小正方形(陰影部分)的面積:
方法一:S小正方形= ;
方法二:S小正方形= ;
(2)(m+n)2,(m﹣n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系為
(3)應(yīng)用(2)中發(fā)現(xiàn)的關(guān)系式解決問(wèn)題:若x+y=9,xy=14,求x﹣y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,轉(zhuǎn)盤(pán)上1、2、3、4四個(gè)數(shù)字分別代表雞、猴、鼠、羊四種生肖郵票(每種郵票各兩枚,雞年郵票面值“80分”,其它郵票都是面值“1.20元”),轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后,指針每落在某個(gè)數(shù)字所在扇形一次就表示獲得該種郵票一枚.
(1)任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,獲得猴年郵票的概率是;
(2)任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張?jiān)谧约彝恋厣掀秸隽艘粔K苗圃,并將這塊苗圃分成了四個(gè)長(zhǎng)方形區(qū)域,其尺寸如圖所示(圖中長(zhǎng)度單位:米),小張計(jì)劃在這四個(gè)區(qū)域上按圖中所示分別種植草本花卉 1 號(hào)、2 號(hào)、3 號(hào)、4 號(hào).
(1)用式子表示這塊苗圃的總面積;
(2)已知種植草本花卉 1 號(hào)、2 號(hào)、3 號(hào)、4 號(hào)的成本分別是每平方米 4 元、6 元、8 元、10 元.
①用式子表示小張?jiān)谶@塊苗圃上種植草本花卉的總成本;
②當(dāng) a=9 時(shí),求小張?jiān)谶@塊苗圃上種植草本花卉的總成本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有5張背面完全相同的卡片,正面分別寫(xiě)有 ,( )0 , ,π,2﹣2 . 把卡片背面朝上洗勻后,從中隨機(jī)抽取1張,其正面的數(shù)字是無(wú)理數(shù)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線EF與MN相交于點(diǎn)O,∠MOE=30°,將一直角三角尺的直角頂點(diǎn)與點(diǎn)O重合,直角邊OA與MN重合,OB在∠NOE內(nèi)部.操作:將三角尺繞點(diǎn)O以每秒5°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),直角邊OB恰好平分∠NOE?此時(shí)OA是否平分∠MOE?請(qǐng)說(shuō)明理由;
(2)若在三角尺轉(zhuǎn)動(dòng)的同時(shí),直線EF也繞點(diǎn)O以每秒8°的速度順時(shí)針?lè)较蛐D(zhuǎn)一周,當(dāng)一方先完成旋轉(zhuǎn)一周時(shí),另一方同時(shí)停止轉(zhuǎn)動(dòng).
①當(dāng)t為何值時(shí),OE平分∠AOB?
②OE能否平分∠NOB?若能請(qǐng)直接寫(xiě)出t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有4張寫(xiě)著以下數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各題:
(1)從中取出2張卡片,使這2張卡片上數(shù)字之積最大,最大值是________.
(2)從中取出2張卡片,使這2張卡片上數(shù)字之差最小,最小值是________.
(3)從中取出4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,請(qǐng)寫(xiě)出一種符合要求的運(yùn)算式子________.(注:4個(gè)數(shù)字都必須用到且只能用一次.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將平行四邊形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)40°,得到平行四邊形AB′C′D′,若點(diǎn)B′恰好落在BC邊上,則∠DC′B′的度數(shù)為( )
A. 60° B. 65° C. 70° D. 75°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com