精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC中,∠ACB=90°,點EBC上,以CE為直徑的⊙OAB于點F,AO∥EF

(1)求證:AB⊙O的切線;

(2)如圖2,連結CFAO于點G,交AE于點P,若BE=2,BF=4,求的值.

【答案】(1)證明見解析(2)2

【解析】

(1)連接OF,如圖1,證明△AOC≌△AOF,根據全等三角形的性質可得∠AFO=∠ACO=90°,即可證得AB是O的切線;

(2)如圖2,在Rt△OFB中,設OE=OF=r,利用勾股定理求得r=3,從而得OB=5,設AC=AF=t,則AB=4+t,Rt△ACB中,利用勾股定理求得t,即可得AC=6,從而可得AO長,然后證明△ACO∽△AGO,繼而可推導得出AO=AG,再證明△BEF∽△BOA,從而可推導得出,再證明△PEF∽△PAG,根據相似三角形的性質即可求得=2.

(1)連接OF,如圖1,

∵OA∥EF,

∴∠1=∠3,∠2=∠4,

∵OE=OF,

∴∠3=∠4,

∴∠1=∠2,

△AOC△AOF中,

,

∴△AOC≌△AOF,

∴∠ACO=∠AFO=90°,

∴OF⊥AB,

∴AB⊙O的切線;

(2)如圖2,在Rt△OFB中,設OE=OF=r,

∵OF2+BF2=OB2,

∴r2+42=(r+2)2,解得r=3,

∴OB=5,

AC=AF=t,則AB=4+t,

Rt△ACB中,t2+82=(t+4)2,解得t=6,

AC=6,

∴AO=,

∵∠CAO=∠GAO,∠ACO=∠AGC=90°,

∴△ACO∽△AGO,

∴AC:AO=AG:AC,

∴AC2=AOAG,

∴AG=,

∴AO=AG,

∵OA∥EF,

∴△BEF∽△BOA,

,

∵EF∥GA,

∴△PEF∽△PAG,

=2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點B落在AD邊上的B'點,AE是折痕。

(1)試判斷B'E與DC的位置關系并說明理由。

(2)如果∠C=130°,求∠AEB的度數。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優(yōu)秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩塊完全一樣的含30°角的直角三角板,將它們重疊在一起并繞其較長直角邊的中點M轉動,使上面一塊三角板的斜邊剛好過下面一塊三角板的直角頂點C.已知AC4,則這兩塊直角三角板頂點A、A之間的距離等于___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在長方形紙片ABCD中,AB3,AD9,折疊紙片ABCD,使頂點C落在邊AD上的點G處,折痕分別交邊AD、BC于點EF,則GEF的面積最大值是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解學生參加戶外活動的情況,和諧中學對學生每天參加戶外活動的時間進行抽樣調查,并將調查結果繪制成如圖兩幅不完整的統(tǒng)計圖,根據圖示,請回答下列問題:

(1)被抽樣調查的學生有______,并補全條形統(tǒng)計圖;

(2)每天戶外活動時間的中位數是______(小時)

(3)該校共有2000名學生,請估計該校每天戶外活動時間超過1小時的學生有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在RtABC中,ACB=90°AC=5,BC=12.在直線AC、BC上分別取一點M、N,使得△AMNABN,則CN=__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.

(1)求從袋中摸出一個球是黃球的概率;

(2)現從袋中取出若干個黑球,攪勻后,使從袋中摸出一個黑球的概率是,求從袋中取出黑球的個數

查看答案和解析>>

同步練習冊答案