【題目】為了發(fā)展鄉(xiāng)村旅游,洪江村準備在洪江河道上修一座與河道垂直的吊橋,如圖1所示,直線l、m代表洪江河的兩岸,且l∥m,點A是洪江村自助農場的所在地,點B是洪江村游樂園所在地.

問題1:吊橋的選址

吊橋準備選在到A、B兩地的距離之和剛好為最小的點C處,即在直線l上找到使(AC+BC)的值為最小的點C的位置.請利用你所學的知識幫助村委會設計選址方案(直接在圖1里作圖),并簡單說明你所設計方案的原理

問題2:河道的寬度

在測量河道的寬度時,施工隊在河道南側的開闊地用以下方法(如圖2所示):作CD⊥1,與河對岸的直線m相交于D;在直線m上取E、F兩點,使得DE=EF=10米;過點F作m的垂線n;在直線n上找到一點G,使得點G與C、E兩點在同一直線上;測量FG的長度為20米.請問你知道河道的寬度嗎?說明理由

【答案】問題1:吊橋的選址,理由:兩點之間線段最短,問題2:河道的寬度為20米

【解析】

問題1:作點A關于直線l的對稱點A,連接BA交直線lC,連接AC,此時AC+BC的值最。

問題2::只要證明CDE≌△GFE,可得CDGF;

問題1:吊橋的選址.

如圖,作點A關于直線l的對稱點A,連接BA交直線lC,連接AC,此時AC+BC的值最。

理由:兩點之間線段最短.

問題2:如圖2中,

RtCDERtGFE中,

,

∴△CDE≌△GFE,

CDFG=20米,

答:河道的寬度為20米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD和正方形DEFG中,頂點B、D、F在同一直線上,H是BF的中點.
(1)如圖1,若AB=1,DG=2,求BH的長;

(2)如圖2,連接AH,GH.

小宇觀察圖2,提出猜想:AH=GH,AH⊥GH.小宇把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:延長AH交EF于點M,連接AG,GM,要證明結論成立只需證△GAM是等腰直角三角形;
想法2:連接AC,GE分別交BF于點M,N,要證明結論成立只需證△AMH≌△HNG.

請你參考上面的想法,幫助小宇證明AH=GH,AH⊥GH.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D、E是BC邊上的點,BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于(
A.3:2:1
B.5:3:1
C.25:12:5
D.51:24:10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BO、CO分別平分∠ABC、∠ACB相交于點O,線段MN過點O與AB、AC分別交于M、N兩點,且MN∥BC,若△AMN的周長等于12,則AB+AC的長等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某風景區(qū)門票價格如圖所示,某旅行社有甲、乙兩個旅行團隊,計劃在“五一”小黃金周期間到該景點游玩,兩團隊游客人數(shù)之和為120人,乙團隊人數(shù)不超過50人.設甲團隊人數(shù)為x人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為W元.
(1)求W關于x的函數(shù)關系式,并寫出自變量x 的取值范圍;
(2)若甲團隊人數(shù)不超過100人,請說明甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,點D,E分別是邊AB,AC的中點,延長DE至點F,使EF=DE,則四邊形ADCF一定是(
A.矩形
B.菱形
C.正方形
D.梯形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC=90°,AB=DB,EB=CB,M,N分別是AE,CD的中點.

(1)求證:△ABM≌△DBN;

(2)試探索BM和BN的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某銷售公司為了提高員工的工作積極性,對員工的工資結構進行改革,改革后月工資由基本保障工資與計件獎勵工資組成.(計件獎勵工資=銷售每件的獎勵金額×銷售的件數(shù))下表是甲、乙兩位職工今年三月份的工資情況信息:

職工

月銷售件數(shù)(件)

100

80

月工資(元)

4500

4100

求員工的月基本保障工資和銷售每件產(chǎn)品的獎勵金額各多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點EF在直線AB上,點G在線段CD上,EDFG交于點H,∠C=∠EFG,∠CED=∠GHD

1)求證:CEGF;

2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;

3)若∠EHF80°,∠D30°,求∠AEM的度數(shù).

查看答案和解析>>

同步練習冊答案