【題目】一元二次方程x2+2x+a=0有實(shí)根,則a的取值范圍是 .
【答案】a≤1
【解析】解:∵一元二次方程x2+2x+a=0有實(shí)根,
∴△=22﹣4a≥0,
解得:a≤1.
所以答案是:a≤1.
【考點(diǎn)精析】關(guān)于本題考查的求根公式和一元一次不等式的解法,需要了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號(hào)方向改變的問題)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是∠BAC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)、如圖a,求證:△BCP≌△DCQ;
(2)、如圖,延長(zhǎng)BP交直線DQ于點(diǎn)E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有除顏色外完全相同的2個(gè)紅球和1個(gè)綠球.
(1)現(xiàn)從袋中摸出1個(gè)球后放回,混合均勻后再摸出1個(gè)球.請(qǐng)用畫樹狀圖或列表的方法,求第一次摸到綠球,第二次摸到紅球的概率;
(2)先從袋中摸出1個(gè)球后不放回,再摸出1個(gè)球,則兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率是多少?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的兩格中,點(diǎn)A、B、C都是格點(diǎn).
(1)將△ABC向左平移6個(gè)單位長(zhǎng)度得到得到△A1B1C1;
(2)將△ABC繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)180°得到△A2B2C2 , 請(qǐng)畫出△A2B2C2;
(3)若點(diǎn)O的坐標(biāo)為(0,0),點(diǎn)B的坐標(biāo)為(2,3);寫出△A1B1C1與△A2B2C2的對(duì)稱中心的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,E、F為對(duì)角線AC上的點(diǎn),且AE=CF,試探索四邊形DEBF的形狀并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與雙曲線y=交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(-4,-2),C為第一象限內(nèi)雙曲線y=上一點(diǎn),且點(diǎn)C在直線的上方.
(1)求雙曲線的函數(shù)解析式;
(2)若△AOC的面積為6,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com