【題目】已知:如圖,銳角△ABC的兩條高BE、CD相交于點O,且OB=OC,
(1)求證:△ABC是等腰三角形;
(2)判斷點O是否在∠BAC的角平分線上,并說明理由。
【答案】(1)、證明過程見解析;(2)、點O是在∠BAC的角平分線上,理由見解析.
【解析】試題分析:(1)、根據(jù)等腰三角形的性質以及高線得出△BDC和△CEB全等,從而得出∠DBC=∠ECB,得到等腰三角形;(2)、連接AO,根據(jù)△BDC和△CEB全等得到DC=EB,然后根據(jù)OB=OC得出OD=OE,結合∠BDC=∠CEB=90°和AO為公共邊得出△ADO和△AEO全等從而得到答案.
試題解析:(1)、∵OB=OC ∴∠OBC=∠OCB ∵BE、CD是兩條高 ∴∠BDC=∠CEB=90°
又∵BC=CB ∴△BDC≌△CEB(AAS) ∴∠DBC=∠ECB ∴AB=AC ∴△ABC是等腰三角形。
(2)、點O是在∠BAC的角平分線上。連結AO. ∵ △BDC≌△CEB ∴DC=EB,
∵OB=OC ∴ OD=OE 又∵∠BDC=∠CEB=90° AO=AO ∴△ADO≌△AEO(HL)
∴∠DAO=∠EAO ∴點O是在∠BAC的角平分線上。
科目:初中數(shù)學 來源: 題型:
【題目】已知(﹣1,y1),(1,y2)是直線y=﹣9x+6上的兩個點,則y1,y2的大小關系是( 。
A. y1>0>y2 B. y1>y2>0 C. y2>0>y1 D. 0>y1>y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,B、C、E三點在同一條直線上,AC∥DE,AC=CE,BC=DE.
(1)求證:∠ACD=∠B;
(2)若∠A=40°,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2015羊年春晚在某網站取得了同時在線人數(shù)超14 000 000的驚人成績,創(chuàng)下了全球單平臺網絡直播記錄,則14 000 000用科學記數(shù)法可表示為( 。
A.0.14×108
B.1.4×107
C.1.4×108
D.14×106
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列四個命題中的逆命題中,是真命題的個數(shù)共有( 。
①相等的角是對頂角;②等腰三角形腰上的高相等;③直角三角形的兩個銳角互余;④全等三角形的三個角分別對應相等.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】尺規(guī)作圖作∠AOB的平分線方法如下:以O為圓心,任意長為半徑畫弧交OA,OB于C,D,再分別以點C,D為圓心,以大于CD長為半徑畫弧,兩弧交于點P,作射線OP.由作法得△OCP≌△ODP的根據(jù)是( )
A. SAS B. ASA C. AAS D. SSS
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com